Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

The diagram above shows the various paths along which a mous [#permalink]

Show Tags

17 Dec 2012, 06:31

9

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

5% (low)

Question Stats:

82% (01:38) correct
18% (01:00) wrong based on 792 sessions

HideShow timer Statistics

Attachment:

Path.png [ 13.46 KiB | Viewed 10898 times ]

The diagram above shows the various paths along which a mouse can travel from point X, where it is released, to point Y, where it is rewarded with a food pellet. How many different paths from X to Y can the mouse take if it goes directly from X to Y without retracing any point along a path?

The diagram above shows the various paths along which a mouse can travel from point X, where it is released, to point Y, where it is rewarded with a food pellet. How many different paths from X to Y can the mouse take if it goes directly from X to Y without retracing any point along a path?

(A) 6 (B) 7 (C) 12 (D) 14 (E) 17

There are 3 forks along the path: 2 choices for the first one, 2 for the second and 3 for the third. Hence total # of ways is 2*2*3=12.

Re: The diagram above shows the various paths along which a mous [#permalink]

Show Tags

28 Dec 2012, 00:52

1

This post received KUDOS

Walkabout wrote:

Attachment:

Path.png

The diagram above shows the various paths along which a mouse can travel from point X, where it is released, to point Y, where it is rewarded with a food pellet. How many different paths from X to Y can the mouse take if it goes directly from X to Y without retracing any point along a path?

(A) 6 (B) 7 (C) 12 (D) 14 (E) 17

Technique here is to multiply the number of choices in every point of decision: \(2*2*3 = 12\)

Re: The diagram above shows the various paths along which a mous [#permalink]

Show Tags

17 Dec 2012, 10:26

Bunuel wrote:

Attachment:

Path.png

The diagram above shows the various paths along which a mouse can travel from point X, where it is released, to point Y, where it is rewarded with a food pellet. How many different paths from X to Y can the mouse take if it goes directly from X to Y without retracing any point along a path?

(A) 6 (B) 7 (C) 12 (D) 14 (E) 17

There are 3 forks along the path: 2 choices for the first one, 2 for the second and 3 for the third. Hence total # of ways is 2*2*3=12.

Answer: C.

Dear Bunnel, Could you please clarify it more...How the forks are working?

Re: The diagram above shows the various paths along which a mous [#permalink]

Show Tags

17 Dec 2012, 10:46

Drik wrote:

Bunuel wrote:

Attachment:

Path.png

The diagram above shows the various paths along which a mouse can travel from point X, where it is released, to point Y, where it is rewarded with a food pellet. How many different paths from X to Y can the mouse take if it goes directly from X to Y without retracing any point along a path?

(A) 6 (B) 7 (C) 12 (D) 14 (E) 17

There are 3 forks along the path: 2 choices for the first one, 2 for the second and 3 for the third. Hence total # of ways is 2*2*3=12.

Answer: C.

Dear Bunnel, Could you please clarify it more...How the forks are working?

is pretty simple: one the first fork you have 2 choices - right and left; idem for the second one; 3 for the third one: right, left and central to the goal. 2*2*3=12

Why is it multiplied here ? Why can't we add all options ?

Posted from my mobile device

Because of Principle of Multiplication: if one event can occur in m ways and a second can occur independently of the first in n ways, then the two events can occur in m*n ways.

For example, if you have two pairs of shoes, A and B, and two shirts, X and Y, then there will be 2*2 = 4 shoes-shirt combinations: AX; AY; BX; BY.

Re: The diagram above shows the various paths along which a mous [#permalink]

Show Tags

21 Oct 2015, 14:16

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: The diagram above shows the various paths along which a mous [#permalink]

Show Tags

21 Jun 2016, 09:24

Walkabout wrote:

Attachment:

Path.png

The diagram above shows the various paths along which a mouse can travel from point X, where it is released, to point Y, where it is rewarded with a food pellet. How many different paths from X to Y can the mouse take if it goes directly from X to Y without retracing any point along a path?

(A) 6 (B) 7 (C) 12 (D) 14 (E) 17

The best way to solve this problem is to use the idea of the fundamental counting principle. In a more standard form you could be asked a question, such as if Tom as 3 belts, 4 ties, and 6 shirts, how many outfits could he make with those items? We can consider each item a decision point, i.e., belts, ties, and shirts. To solve this, we just need to multiply the number of decisions Tom can make together, so:

3 x 4 x 6 = 72 ways.

Tom has 72 options when dressing with those items.

This same logic can be applied to this problem here. We can first determine the number ways the mouse can go from one point to the next.

X to A = 1

A to B = 2

B to C = 1

C to D= 2

D to E = 1

E to F = 3

F to Y =1

Therefore, to find the total number of ways from X to Y we can multiply all these numbers together:

1 x 2 x 1 x 2 x 1 x 3 x 1 = 12 ways.

There are 12 different paths.

Answer is C.
_________________

Jeffrey Miller Scott Woodbury-Stewart Founder and CEO

It’s quickly approaching two years since I last wrote anything on this blog. A lot has happened since then. When I last posted, I had just gotten back from...

Since my last post, I’ve got the interview decisions for the other two business schools I applied to: Denied by Wharton and Invited to Interview with Stanford. It all...

Marketing is one of those functions, that if done successfully, requires a little bit of everything. In other words, it is highly cross-functional and requires a lot of different...