Find all School-related info fast with the new School-Specific MBA Forum

It is currently 25 Oct 2014, 03:44

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

The Discreet Charm of the DS

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Expert Post
30 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23409
Followers: 3614

Kudos [?]: 28941 [30] , given: 2871

The Discreet Charm of the DS [#permalink] New post 02 Feb 2012, 03:15
30
This post received
KUDOS
Expert's post
46
This post was
BOOKMARKED
I'm posting the next set of medium/hard DS questions. I'll post OA's with detailed explanations after some discussion. Please, post your solutions along with the answers. Good luck!

1. Bonnie can paint a stolen car in x hours, and Clyde can paint the same car in y hours. They start working simultaneously and independently at their respective constant rates at 9:45am. If both x and y are odd integers, is x=y?
(1) x^2+y^2<12
(2) Bonnie and Clyde complete the painting of the car at 10:30am

Solution: the-discreet-charm-of-the-ds-126962-20.html#p1039633

2. Is xy<=1/2?
(1) x^2+y^2=1
(2) x^2-y^2=0

Solution: the-discreet-charm-of-the-ds-126962-20.html#p1039634

3. If a, b and c are integers, is abc an even integer?
(1) b is halfway between a and c
(2) a = b - c

Solution: the-discreet-charm-of-the-ds-126962-40.html#p1039637

4. How many numbers of 5 consecutive positive integers is divisible by 4?
(1) The median of these numbers is odd
(2) The average (arithmetic mean) of these numbers is a prime number

Solution: the-discreet-charm-of-the-ds-126962-40.html#p1039645

5. What is the value of integer x?
(1) 2x^2+9<9x
(2) |x+10|=2x+8

Solution: the-discreet-charm-of-the-ds-126962-40.html#p1039650

6. If a and b are integers and ab=2, is a=2?
(1) b+3 is not a prime number
(2) a>b

Solution: the-discreet-charm-of-the-ds-126962-40.html#p1039651

7. A certain fruit stand sold total of 76 oranges to 19 customers. How many of them bought only one orange?
(1) None of the customers bought more than 4 oranges
(2) The difference between the number of oranges bought by any two customers is even

Solution: the-discreet-charm-of-the-ds-126962-40.html#p1039655

8. If x=0.abcd, where a, b, c and d are digits from 0 to 9, inclusive, is x>7/9?
(1) a+b>14
(2) a-c>6

Solution: the-discreet-charm-of-the-ds-126962-40.html#p1039662

9. If x and y are negative numbers, is x<y?
(1) 3x + 4 < 2y + 3
(2) 2x - 3 < 3y - 4

Solution: the-discreet-charm-of-the-ds-126962-40.html#p1039665

10. The function f is defined for all positive integers a and b by the following rule: f(a,b)=(a+b)/GCF(a,b), where GCF(a,b) is the greatest common factor of a and b. If f(10,x)=11, what is the value of x?
(1) x is a square of an integer
(2) The sum of the distinct prime factors of x is a prime number.

Solution: the-discreet-charm-of-the-ds-126962-40.html#p1039671

11. If x and y are integers, is x a positive integer?
(1) x*|y| is a prime number.
(2) x*|y| is non-negative integer.

Solution: the-discreet-charm-of-the-ds-126962-40.html#p1039678

12. If 6a=3b=7c, what is the value of a+b+c?
(1) ac=6b
(2) 5b=8a+4c

Solution: the-discreet-charm-of-the-ds-126962-40.html#p1039680
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Kaplan GMAT Prep Discount CodesKnewton GMAT Discount CodesVeritas Prep GMAT Discount Codes
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23409
Followers: 3614

Kudos [?]: 28941 [0], given: 2871

Re: The Discreet Charm of the DS [#permalink] New post 06 Feb 2012, 08:54
Expert's post
kys123 wrote:
Hey Bunuel can I ask a question for 12?

We know 6a=3b

And for statement one:

ac =6b. Can't 6b =12a

Then it becomes ac=12a ==> c=12. I know it's wrong since if a is 0 then they will be equal regardless, but can you explain why what I did was wrong?


ac=12a (here you can not reduce by a and write c=12 as you exclude possibility of a=0) --> a(c-12)=0 --> either a=0 OR c=12. So, we get either a=b=c=0 or a=14, b=28 and c=12.

nhemdani wrote:
Also,

6a = 3b = 7c

Can we say a/b= 1/2, b/c = 7/3, and a/c = 7/6
a) ac = 6b, therefore c = 6b/a
substituting this in b/c => b / (6b/a) = 7/3 => a =14, b=28, c = 12

Isnt A also sufficient? Am I ignoring something?


Your doubt is partially addressed above, though there is another thing: from 6a = 3b you can not write a/b=1/2 because b can be zero and we can not divide by zero. The same for other ratios you wrote.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Manager
Manager
avatar
Joined: 03 Oct 2009
Posts: 64
Followers: 0

Kudos [?]: 37 [0], given: 8

Re: The Discreet Charm of the DS [#permalink] New post 06 Feb 2012, 19:52
Bunuel wrote:
12. If 6a=3b=7c, what is the value of a+b+c?

Given: 6a=3b=7c --> least common multiple of 6, 3, and 7 is 42 hence we ca write: 6a=3b=7c=42x, for some number x --> a=7x, b=14x and c=6x.

(1) ac=6b --> 7x*6x=6*14x --> x^2=2x --> x=0 or x=2. Not sufficient.

(2) 5b=8a+4c --> 5*14x=8*7x+4*14x --> 70x=80x --> 10x=0 --> x=0 --> a=b=c=0 --> a+b+c=0. Sufficient.

Answer: B.


I did this for option 1 -

ac=6b
ac=2 * 3 * b

since 6a=3b=7c

a c = 2 * 6a
c = 12
now we can find a and b also, so seems sufficient.

so where am i going wrong?
Manager
Manager
avatar
Joined: 31 Jan 2012
Posts: 74
Followers: 1

Kudos [?]: 17 [0], given: 2

Re: The Discreet Charm of the DS [#permalink] New post 06 Feb 2012, 23:11
Well cause there is 2 options for statement 1.

ac = 3b ==>
ac = 12a
Now if a was 0 then 0*12 = 0*c ==> 6*0=3*0=7*0
a+b+c= 0
or

12a = ca
c=12
7*12(c)=3*28(b)=6*14(a)
a+b+c= 54.

There is 2 possible solutions, so you do not know if it's 0 or 54
Manager
Manager
avatar
Status: Retaking next month
Affiliations: None
Joined: 05 Mar 2011
Posts: 231
Location: India
Concentration: Marketing, Entrepreneurship
GMAT 1: 570 Q42 V27
GPA: 3.01
WE: Sales (Manufacturing)
Followers: 5

Kudos [?]: 23 [0], given: 33

Re: The Discreet Charm of the DS [#permalink] New post 09 Feb 2012, 01:12
HI Bunuel,

I personally dont feel very comfortable with your solution for Q9. Just not very intuitive for me.

I tried to solve it graphically but failed. Can u please help.

Thanks in advance.

Note: I really enjoyed doing these set of questions. U r taking GMAT club Quant practice questions to a next level alltogether. Thanks
Manager
Manager
avatar
Joined: 06 Jan 2012
Posts: 85
Followers: 0

Kudos [?]: 9 [0], given: 20

Re: The Discreet Charm of the DS [#permalink] New post 24 Feb 2012, 13:52
I have seen references to use your guides in many threads, Bunuel. Now I can see why. I will be sure to use your challenge sets in the coming weeks to hopefully boost my quant score into the 48-50 range. Thank you so much for your invaluable contributions for relative GMAT newbies, like myself.
Intern
Intern
avatar
Joined: 08 Jan 2012
Posts: 10
Followers: 0

Kudos [?]: 0 [0], given: 1

Re: The Discreet Charm of the DS [#permalink] New post 25 Feb 2012, 04:27
All,

7. A certain fruit stand sold total of 76 oranges to 19 customers. How many of them bought only one orange?
(1) None of the customers bought more than 4 oranges
(2) The difference between the number of oranges bought by any two customers is even

In respect to the question above, I assumed that any two of those 19 customer might have bought 5 & 3 oranges and hence I, marked the option insufficient. Bunnel have equated and treated the option in totally different way. I ,lack the skill to convert these sort of condition in to equation.

please can some post or point to the list of similar Word translation sentences and how to convert them in to equation. Im very new to GMAT club so please forgie me if this is the repeated posting.

Thanks,
Vids
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23409
Followers: 3614

Kudos [?]: 28941 [0], given: 2871

Re: The Discreet Charm of the DS [#permalink] New post 25 Feb 2012, 04:53
Expert's post
vidhya16 wrote:
All,

7. A certain fruit stand sold total of 76 oranges to 19 customers. How many of them bought only one orange?
(1) None of the customers bought more than 4 oranges
(2) The difference between the number of oranges bought by any two customers is even

In respect to the question above, I assumed that any two of those 19 customer might have bought 5 & 3 oranges and hence I, marked the option insufficient. Bunnel have equated and treated the option in totally different way. I ,lack the skill to convert these sort of condition in to equation.

please can some post or point to the list of similar Word translation sentences and how to convert them in to equation. Im very new to GMAT club so please forgie me if this is the repeated posting.

Thanks,
Vids


I did not use any equation for this question.

Statement (2) says: the difference between the number of oranges bought by ANY two customers is even --> in order the difference between ANY number of oranges bought to be even, either all customers must have bought odd number of oranges or all customers must have bough even number of oranges.

Now, the sum of 19 odd integers is odd and we have that fruit stand sold total of 76, so even number of oranges, which means that the case where all customers buy odd number of oranges is not possible. And since 1 is odd then no one bought only one orange. Sufficient.

As for word translation check this: word-problems-made-easy-87346.html

Hope it helps.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Senior Manager
Senior Manager
User avatar
Joined: 12 Dec 2010
Posts: 282
Concentration: Strategy, General Management
GMAT 1: 680 Q49 V34
GMAT 2: 730 Q49 V41
GPA: 4
WE: Consulting (Other)
Followers: 6

Kudos [?]: 32 [0], given: 23

Reviews Badge
Re: The Discreet Charm of the DS [#permalink] New post 24 Mar 2012, 08:38
Bunuel wrote:
SOLUTIONS:

1. Bonnie can paint a stolen car in x hours, and Clyde can paint the same car in y hours. They start working simultaneously and independently at their respective constant rates at 9:45am. If both x and y are odd integers, is x=y?

(2) Bonnie and Clyde complete the painting of the car at 10:30am --> they complete the job in 3/4 of an hour (45 minutes), since it's neither an integer nor integer/2 then x and y are not equal. Sufficient.

Answer: B.


please consider adding "working together" to the stmt 2- as I deciphered they both worked separately and ended at the same time so cool enough (though same answer but got carried away by the wording)

Thanks once again for nice collection!!
_________________

My GMAT Journey 540->680->730!


~ When the going gets tough, the Tough gets going!

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23409
Followers: 3614

Kudos [?]: 28941 [0], given: 2871

Re: The Discreet Charm of the DS [#permalink] New post 24 Mar 2012, 14:08
Expert's post
yogesh1984 wrote:
Bunuel wrote:
SOLUTIONS:

1. Bonnie can paint a stolen car in x hours, and Clyde can paint the same car in y hours. They start working simultaneously and independently at their respective constant rates at 9:45am. If both x and y are odd integers, is x=y?

(2) Bonnie and Clyde complete the painting of the car at 10:30am --> they complete the job in 3/4 of an hour (45 minutes), since it's neither an integer nor integer/2 then x and y are not equal. Sufficient.

Answer: B.


please consider adding "working together" to the stmt 2- as I deciphered they both worked separately and ended at the same time so cool enough (though same answer but got carried away by the wording)

Thanks once again for nice collection!!


Thank you for the suggestion.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Manager
Manager
avatar
Joined: 12 Feb 2012
Posts: 108
Followers: 1

Kudos [?]: 10 [0], given: 28

Re: The Discreet Charm of the DS [#permalink] New post 14 May 2012, 15:40
Bunuel wrote:
5. What is the value of integer x?

(1) 2x^2+9<9x --> factor qudratics: (x-\frac{3}{2})(x-3)<0 --> roots are \frac{3}{2} and 3 --> "<" sign indicates that the solution lies between the roots: 1.5<x<3 --> since there only integer in this range is 2 then x=2. Sufficient.

(2) |x+10|=2x+8 --> LHS is an absolute value, which is always non negative, hence RHS must also be non-negative: 2x+8\geq{0} --> x\geq{-4}, for this range x+10 is positive hence |x+10|=x+10 --> x+10=2x+8 --> x=2. Sufficient.

Answer: D.

Check this for more on solving inequalities like the one in the first statement:
x2-4x-94661.html#p731476
inequalities-trick-91482.html
everything-is-less-than-zero-108884.html?hilit=extreme#p868863
xy-plane-71492.html?hilit=solving%20quadratic#p841486



Hope it helps.



Hey Bunuel,

Two questions.

1) How did you factor 2x^2+9<9x (ie 2x^2-9x+9<0) so quickly? I always struggle with factoring polynomials in which a coefficient other than 1 is on the x^2. Did you use the quadratic formula? I am interested in knowing if there is a quicker way than the quadratic formula method.

2) Once you determined that 1.5 and 3 were the roots of the equation, how did you figure that the solution was in between 1.5 and 3 from just looking at the sign "<"??
I used the dumb method of just plugging values that lie from (-infinity , 1.5), (1.5, 3) and (3, +infinity). How did you know the sign "<" told you the solution was in in between (1.5,3)?

Many thanks Bunuel! Your my hero dude!
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23409
Followers: 3614

Kudos [?]: 28941 [0], given: 2871

Re: The Discreet Charm of the DS [#permalink] New post 14 May 2012, 22:19
Expert's post
alphabeta1234 wrote:
Bunuel wrote:
5. What is the value of integer x?

(1) 2x^2+9<9x --> factor qudratics: (x-\frac{3}{2})(x-3)<0 --> roots are \frac{3}{2} and 3 --> "<" sign indicates that the solution lies between the roots: 1.5<x<3 --> since there only integer in this range is 2 then x=2. Sufficient.

(2) |x+10|=2x+8 --> LHS is an absolute value, which is always non negative, hence RHS must also be non-negative: 2x+8\geq{0} --> x\geq{-4}, for this range x+10 is positive hence |x+10|=x+10 --> x+10=2x+8 --> x=2. Sufficient.

Answer: D.

Check this for more on solving inequalities like the one in the first statement:
x2-4x-94661.html#p731476
inequalities-trick-91482.html
everything-is-less-than-zero-108884.html?hilit=extreme#p868863
xy-plane-71492.html?hilit=solving%20quadratic#p841486

Hope it helps.



Hey Bunuel,

Two questions.

1) How did you factor 2x^2+9<9x (ie 2x^2-9x+9<0) so quickly? I always struggle with factoring polynomials in which a coefficient other than 1 is on the x^2. Did you use the quadratic formula? I am interested in knowing if there is a quicker way than the quadratic formula method.

2) Once you determined that 1.5 and 3 were the roots of the equation, how did you figure that the solution was in between 1.5 and 3 from just looking at the sign "<"??
I used the dumb method of just plugging values that lie from (-infinity , 1.5), (1.5, 3) and (3, +infinity). How did you know the sign "<" told you the solution was in in between (1.5,3)?

Many thanks Bunuel! Your my hero dude!


1. Solving and Factoring Quadratics:
http://www.purplemath.com/modules/solvquad.htm
http://www.purplemath.com/modules/factquad.htm

2. Solving inequalities:
x2-4x-94661.html#p731476 (Check this first)
inequalities-trick-91482.html
everything-is-less-than-zero-108884.html?hilit=extreme#p868863
xy-plane-71492.html?hilit=solving%20quadratic#p841486

Hope it helps.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Manager
Manager
avatar
Joined: 21 Feb 2012
Posts: 115
Location: India
Concentration: Finance, General Management
GMAT 1: 600 Q49 V23
GPA: 3.8
WE: Information Technology (Computer Software)
Followers: 0

Kudos [?]: 32 [0], given: 15

Re: The Discreet Charm of the DS [#permalink] New post 15 May 2012, 10:39
Bunuel wrote:
5. What is the value of integer x?

(1) 2x^2+9<9x --> factor qudratics: (x-\frac{3}{2})(x-3)<0 --> roots are \frac{3}{2} and 3 --> "<" sign indicates that the solution lies between the roots: 1.5<x<3 --> since there only integer in this range is 2 then x=2. Sufficient.

(2) |x+10|=2x+8 --> LHS is an absolute value, which is always non negative, hence RHS must also be non-negative: 2x+8\geq{0} --> x\geq{-4}, for this range x+10 is positive hence |x+10|=x+10 --> x+10=2x+8 --> x=2. Sufficient.

Answer: D.

Hope it helps.


Hi bunuel,
Isn't |x+10|=2x+8 be written as
Either x+10=2x+8 or x+10=-(2x+8) ? and then this should be solved?
Please help on this one.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23409
Followers: 3614

Kudos [?]: 28941 [0], given: 2871

Re: The Discreet Charm of the DS [#permalink] New post 15 May 2012, 10:43
Expert's post
piyushksharma wrote:
Bunuel wrote:
5. What is the value of integer x?

(1) 2x^2+9<9x --> factor qudratics: (x-\frac{3}{2})(x-3)<0 --> roots are \frac{3}{2} and 3 --> "<" sign indicates that the solution lies between the roots: 1.5<x<3 --> since there only integer in this range is 2 then x=2. Sufficient.

(2) |x+10|=2x+8 --> LHS is an absolute value, which is always non negative, hence RHS must also be non-negative: 2x+8\geq{0} --> x\geq{-4}, for this range x+10 is positive hence |x+10|=x+10 --> x+10=2x+8 --> x=2. Sufficient.

Answer: D.

Hope it helps.


Hi bunuel,
Isn't |x+10|=2x+8 be written as
Either x+10=2x+8 or x+10=-(2x+8) ? and then this should be solved?
Please help on this one.


We goth that x is more than or equal to 4. Now, for this range x+10>0 so |x+10| expands only as x+10 (|x+10|=x+10).
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Manager
Manager
avatar
Joined: 21 Feb 2012
Posts: 115
Location: India
Concentration: Finance, General Management
GMAT 1: 600 Q49 V23
GPA: 3.8
WE: Information Technology (Computer Software)
Followers: 0

Kudos [?]: 32 [0], given: 15

Re: The Discreet Charm of the DS [#permalink] New post 15 May 2012, 11:16
Bunuel wrote:
9. If x and y are negative numbers, is x<y?

(1) 3x + 4 < 2y + 3 --> 3x<2y-1. x can be some very small number for instance -100 and y some large enough number for instance -3 and the answer would be YES, x<y BUT if x=-2 and y=-2.1 then the answer would be NO, x>y. Not sufficient.

(2) 2x - 3 < 3y - 4 --> x<1.5y-\frac{1}{2} --> x<y+(0.5y-\frac{1}{2})=y+negative --> x<y (as y+negative is "more negative" than y). Sufficient.

Answer: B.



Hi bunuel,
Did not got how u solved option 2.Could you please explain in detail.
thanks.
Senior Manager
Senior Manager
avatar
Joined: 07 Apr 2012
Posts: 465
Followers: 1

Kudos [?]: 8 [0], given: 58

CAT Tests
Re: The Discreet Charm of the DS [#permalink] New post 21 May 2012, 05:32
I plugged in number for question 2 statement (1).

Any numbers that I could think of really met the inequasion.

But do you have an algebric way of showing this rule?
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23409
Followers: 3614

Kudos [?]: 28941 [0], given: 2871

Re: The Discreet Charm of the DS [#permalink] New post 21 May 2012, 05:35
Expert's post
ronr34 wrote:
I plugged in number for question 2 statement (1).

Any numbers that I could think of really met the inequasion.

But do you have an algebric way of showing this rule?


Please read the thread. Solutions to ALL the questions are given on the previous pages.

2. Is xy<=1/2?

(1) x^2+y^2=1. Recall that (x-y)^2\geq{0} (square of any number is more than or equal to zero) --> x^2-2xy+y^2\geq{0} --> since x^2+y^2=1 then: 1-2xy\geq{0} --> xy\leq{\frac{1}{2}}. Sufficient.

(2) x^2-y^2=0 --> |x|=|y|. Clearly insufficient.

Answer: A.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 07 Jul 2011
Posts: 1
Followers: 0

Kudos [?]: 0 [0], given: 0

Re: The Discreet Charm of the DS [#permalink] New post 25 May 2012, 10:58
Bunuel wrote:
3. If a, b and c are integers, is abc an even integer?

In order the product of the integers to be even at leas on of them must be even

(1) b is halfway between a and c --> on the GMAT we often see such statement and it can ALWAYS be expressed algebraically as b=\frac{a+c}{2}. Now, does that mean that at leas on of them is be even? Not necessarily: a=1, b=5 and c=3, of course it's also possible that for example b=even, for a=1 and b=7. Not sufficient.

(2) a = b - c --> a+c=b. Since it's not possible that the sum of two odd integers to be odd then the case of 3 odd numbers is ruled out, hence at least on of them must be even. Sufficient.

Answer: B.


What about the case when all a,b,c are zero. In this case, abc = 0 and 0 is neither odd nor even. Hence 'E'.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23409
Followers: 3614

Kudos [?]: 28941 [0], given: 2871

Re: The Discreet Charm of the DS [#permalink] New post 25 May 2012, 11:29
Expert's post
avinash2603 wrote:
Bunuel wrote:
3. If a, b and c are integers, is abc an even integer?

In order the product of the integers to be even at leas on of them must be even

(1) b is halfway between a and c --> on the GMAT we often see such statement and it can ALWAYS be expressed algebraically as b=\frac{a+c}{2}. Now, does that mean that at leas on of them is be even? Not necessarily: a=1, b=5 and c=3, of course it's also possible that for example b=even, for a=1 and b=7. Not sufficient.

(2) a = b - c --> a+c=b. Since it's not possible that the sum of two odd integers to be odd then the case of 3 odd numbers is ruled out, hence at least on of them must be even. Sufficient.

Answer: B.


What about the case when all a,b,c are zero. In this case, abc = 0 and 0 is neither odd nor even. Hence 'E'.


Welcome to GMAT Club. Below is an answer to your question.

Notice that zero is an even integer. An even number is an integer that is "evenly divisible" by 2, i.e., divisible by 2 without a remainder. Since 0/2=0=integer then zero is even.

For more on this subject please check Number Theory chapter of Math Book: math-number-theory-88376.html

Hope it helps.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Manager
Manager
User avatar
Joined: 01 Nov 2010
Posts: 196
Location: India
Concentration: Technology, Marketing
GMAT Date: 08-27-2012
GPA: 3.8
WE: Marketing (Manufacturing)
Followers: 6

Kudos [?]: 20 [0], given: 30

Re: The Discreet Charm of the DS [#permalink] New post 27 May 2012, 02:21
Here is my approach :
1. Bonnie can paint a stolen car in x hours, and Clyde can paint the same car in y hours. They start working simultaneously and independently at their respective constant rates at 9:45am. If both x and y are odd integers, is x=y?
(1) x^2+y^2<12
(2) Bonnie and Clyde complete the painting of the car at 10:30am

Ans: x & y are odd integer.
statement1: x=1,y=1 or x=3,y=1 not sufficient
statement2: time of completion is 10.30am-9.45am =45min =3/4Hr; i.e rate and time consumed by both is same.
hence, statement B is sufficient.

Ans : B

2. Is xy<=1/2?
(1) x^2+y^2=1
(2) x^2-y^2=0

Ans: statement 1: x^2+y^2=1,i choose the no: x=y=sqrt(1/2); hence sufficient
x=0,y=1 ;hence sufficient
x=1,y=0 ;hence sufficient

i didnt find any number which doesnot comply to statement 1.
so, sufficient.
statement2: x^2-y^2=0 ==> mod(x) = mod(y)
==> x=y
& x=-y not sufficient

Ans: A

3. If a, b and c are integers, is abc an even integer?
(1) b is halfway between a and c
(2) a = b - c

Ans: a,b,c are integers,not in sequence.
statement 1: b is half way between a & c.
a=2,b=4,c=6 abc=48 even
a=2,b=3,c=6 abc=36 even
a=3,b=5,c=7 abc=105 odd

statement 1 Not sufficient
Statement 2: a=b-c ==> b=a+c ; we cant say that abc will be even or odd because we dont know whether a,b,c is odd or even.
Not sufficient
on combining both statement also, we cant say anything about abc.

Ans: E.

4. How many numbers of 5 consecutive positive integers is divisible by 4?
(1) The median of these numbers is odd
(2) The average (arithmetic mean) of these numbers is a prime number

Ans: E ( No explanation)

5. What is the value of integer x?
(1) 2x^2+9<9x
(2) |x+10|=2x+8
Ans:
statement 1: 2x^2+9<9x ==>2x^2-9x+9<0
==>(2x-1)(x-3)<0
so, 1/2<x<3 or x>3&x<1/2
Not sufficient

Statement 2: |x+10| = 2x+8
if x>10;
x+10=2x+8 ==>x=2 but (x>10)
if x<10;
-x-10=2x+8 ==>x= -6 and (x<10)
so, x=-6
Sufficient

Ans B

6. If a and b are integers and ab=2, is a=2?
(1) b+3 is not a prime number
(2) a>b
Ans: ab=2 ==> a=2/b

statement 1: b+3 is not a prime number i.e
b+3=1,4,6,8 so, b could be = -2,1,3,5
Not sufficient
Statement 2: a>b
and ab=2 and a&b are integers..only possible value is
a=2 & b=1

Sufficient
Ans B


7. A certain fruit stand sold total of 76 oranges to 19 customers. How many of them bought only one orange?
(1) None of the customers bought more than 4 oranges
(2) The difference between the number of oranges bought by any two customers is even
Ans:
total oranges =76
No of customer =19
how many bought only 1 oranges?
statement1:
if none bought more than 4, then,max no of oranges bought is 19x4 =76 oranges.
in short, each customer has bought 4 oranges.
sufficient
statement 2: customer can buy any no of oranges totaling 76. 4-4=0 even, 5-3=2 even,and many more.
not sufficient

Ans : A

8. If x=0.abcd, where a, b, c and d are digits from 0 to 9, inclusive, is x>7/9?
(1) a+b>14
(2) a-c>6
Ans: x=0.abcd
7/9=0.777777

statement 1: a+b>14
(a,b) :(7,8) ,(7,9),(8,9),(8,8),(9,9)
x=0.abcd ; replacing the value of a&b
x=0.78cd
x=0.79cd
x=0.89cd
x=0.88cd
x=0.99cd
all are greater then 0.77777 hence
Sufficient

statment 2: a-c>6
(a,c): (9,2) (7,0) and many more
x=0.92cd is >0.7777 ok
x=0.70cd is <0.7777 not ok

Not sufficient

Ans A


9. If x and y are negative numbers, is x<y?
(1) 3x + 4 < 2y + 3
(2) 2x - 3 < 3y - 4
Ans: x,y <0
statement 1: 3x+4<2y+3 ==>3x-2y+1<0 not sufficient

statement 2: 2x-3<3y-4 ==> 2x-3y +1<0 not sufficient

on combining both statement and solving for x& y
x< -1/5 & y< 1/5
so, y>x for interval (-1/5 to 1/5) since both are -ve so interval should be (-1/5 to 0)
and y=x for (-infinity to -1/5)
Not sufficient

Ans E


10. The function f is defined for all positive integers a and b by the following rule: f(a,b)=(a+b)/GCF(a,b), where GCF(a,b) is the greatest common factor of a and b. If f(10,x)=11, what is the value of x?
(1) x is a square of an integer
(2) The sum of the distinct prime factors of x is a prime number.
Ans: f(10,x)=11 ==> (10+x)/GCF(10,x) =11 ==>x = GCF(10,x)-10

Statement 1: x could be =1,4,9,16,25..
GCF of (10,1) , (10,4),(10,9) will be different.
Not sufficient

Statement 2:
x= 2 , no of factor 2 (1&2) ok
x= 4 , no of factor 3 (1,2,4) ok
x= 10 , no of factor 4 (1,2,5,10) not ok
not sufficient

on combining I & II
we can get value like 1,4,25 which satisfy both the statement
but no unique value of x can be found.

Ans E

11. If x and y are integers, is x a positive integer?
(1) x*|y| is a prime number.
(2) x*|y| is non-negative integer.
Ans:
statement 1: x*|y| is prime no
no information about +ve or -ve no.
Not sufficient

Satement 2: for x*|y| has to non-ve integer both x& y has to -ve or +ve simultaneously
any value inside mode is always positive. mode(y) = positive
to make x*|y| +ve, X has to be positive.

hence sufficient.
Ans B


12. If 6a=3b=7c, what is the value of a+b+c?
(1) ac=6b
(2) 5b=8a+4c
Ans: 6a=3b=7c= k
a=k/6
b=k/3
c=k/7
a+b+c = (k/6)+(k/3)+k/7) if we can find the value of K, we wil have our answer.

Statement 1: ac=6b ==>(k/6)(k/7) = 6.k/3 ==>k=84
Sufficient

statement 2: 5b=8a+4c
==> 5.k/3 = (8k/6)+(4.k/7)
no value of k can be found.

Hence
Ans A.

please check my approach ans suggest if anything is missing or wrong.
_________________

kudos me if you like my post.

Attitude determine everything.
all the best and God bless you.

Manager
Manager
avatar
Joined: 28 May 2011
Posts: 196
Location: United States
Concentration: General Management, International Business
GMAT 1: 720 Q49 V38
GPA: 3.6
WE: Project Management (Computer Software)
Followers: 2

Kudos [?]: 42 [0], given: 7

Re: The Discreet Charm of the DS [#permalink] New post 04 Jun 2012, 20:39
Bunuel wrote:
5. What is the value of integer x?

(1) 2x^2+9<9x --> factor qudratics: (x-\frac{3}{2})(x-3)<0 --> roots are \frac{3}{2} and 3 --> "<" sign indicates that the solution lies between the roots: 1.5<x<3 --> since there only integer in this range is 2 then x=2. Sufficient.



(x-\frac{3}{2})(x-3)<0

I agree one solution of this inequality is

(x-\frac{3}{2}) > 0 , (x-3)<0 => (\frac{3}{2}) < x < 3

However, Don't u think this can also resort to

(x-\frac{3}{2}) < 0 , (x-3)>0 => x < (\frac{3}{2}) , x > 3

and in that case x can have infinite values.

and if that is the case Stmt-1 alone would not be sufficient.
_________________

-------------------------------------------------------------------------------------------------------------------------------
http://gmatclub.com/forum/a-guide-to-the-official-guide-13-for-gmat-review-134210.html
-------------------------------------------------------------------------------------------------------------------------------

Re: The Discreet Charm of the DS   [#permalink] 04 Jun 2012, 20:39
    Similar topics Author Replies Last post
Similar
Topics:
5 Experts publish their posts in the topic Serious individual art collectors are usually discreet when espa 7 17 Jun 2013, 23:00
Third time's a charm. vwjetty 1 20 Jul 2010, 11:09
Discreet Profile Evaluation almostfamous 1 23 Oct 2009, 19:31
7 Experts publish their posts in the topic Second try is the charm 710 (48 q, 38 v) mohater 15 21 Jun 2009, 13:13
4 times the charm uclandru 4 13 Nov 2005, 23:12
Display posts from previous: Sort by

The Discreet Charm of the DS

  Question banks Downloads My Bookmarks Reviews Important topics  

Go to page   Previous    1   2   3   4   5   6   7   8    Next  [ 160 posts ] 



GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.