The Discreet Charm of the DS : GMAT Data Sufficiency (DS) - Page 5
Check GMAT Club Decision Tracker for the Latest School Decision Releases http://gmatclub.com/AppTrack

 It is currently 22 Jan 2017, 17:01

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# The Discreet Charm of the DS

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

### Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 36601
Followers: 7097

Kudos [?]: 93473 [24] , given: 10563

The Discreet Charm of the DS [#permalink]

### Show Tags

02 Feb 2012, 03:15
24
KUDOS
Expert's post
112
This post was
BOOKMARKED
I'm posting the next set of medium/hard DS questions. I'll post OA's with detailed explanations after some discussion. Please, post your solutions along with the answers. Good luck!

1. Bonnie can paint a stolen car in x hours, and Clyde can paint the same car in y hours. They start working simultaneously and independently at their respective constant rates at 9:45am. If both x and y are odd integers, is x=y?
(1) x^2+y^2<12
(2) Bonnie and Clyde complete the painting of the car at 10:30am

Solution: the-discreet-charm-of-the-ds-126962-20.html#p1039633

2. Is xy<=1/2?
(1) x^2+y^2=1
(2) x^2-y^2=0

Solution: the-discreet-charm-of-the-ds-126962-20.html#p1039634

3. If a, b and c are integers, is abc an even integer?
(1) b is halfway between a and c
(2) a = b - c

Solution: the-discreet-charm-of-the-ds-126962-40.html#p1039637

4. How many numbers of 5 consecutive positive integers is divisible by 4?
(1) The median of these numbers is odd
(2) The average (arithmetic mean) of these numbers is a prime number

Solution: the-discreet-charm-of-the-ds-126962-40.html#p1039645

5. What is the value of integer x?
(1) 2x^2+9<9x
(2) |x+10|=2x+8

Solution: the-discreet-charm-of-the-ds-126962-40.html#p1039650

6. If a and b are integers and ab=2, is a=2?
(1) b+3 is not a prime number
(2) a>b

Solution: the-discreet-charm-of-the-ds-126962-40.html#p1039651

7. A certain fruit stand sold total of 76 oranges to 19 customers. How many of them bought only one orange?
(1) None of the customers bought more than 4 oranges
(2) The difference between the number of oranges bought by any two customers is even

Solution: the-discreet-charm-of-the-ds-126962-40.html#p1039655

8. If x=0.abcd, where a, b, c and d are digits from 0 to 9, inclusive, is x>7/9?
(1) a+b>14
(2) a-c>6

Solution: the-discreet-charm-of-the-ds-126962-40.html#p1039662

9. If x and y are negative numbers, is x<y?
(1) 3x + 4 < 2y + 3
(2) 2x - 3 < 3y - 4

Solution: the-discreet-charm-of-the-ds-126962-40.html#p1039665

10. The function f is defined for all positive integers a and b by the following rule: f(a,b)=(a+b)/GCF(a,b), where GCF(a,b) is the greatest common factor of a and b. If f(10,x)=11, what is the value of x?
(1) x is a square of an integer
(2) The sum of the distinct prime factors of x is a prime number.

Solution: the-discreet-charm-of-the-ds-126962-40.html#p1039671

11. If x and y are integers, is x a positive integer?
(1) x*|y| is a prime number.
(2) x*|y| is non-negative integer.

Solution: the-discreet-charm-of-the-ds-126962-40.html#p1039678

12. If 6a=3b=7c, what is the value of a+b+c?
(1) ac=6b
(2) 5b=8a+4c

Solution: the-discreet-charm-of-the-ds-126962-40.html#p1039680
_________________
Intern
Joined: 12 Jun 2012
Posts: 5
Followers: 0

Kudos [?]: 5 [0], given: 1

Re: The Discreet Charm of the DS [#permalink]

### Show Tags

20 Jun 2012, 06:51
Hi Bunuel,
Where can I find the AO and explainations. I can see them anywhere in the thread ?

Rgds
Math Expert
Joined: 02 Sep 2009
Posts: 36601
Followers: 7097

Kudos [?]: 93473 [0], given: 10563

Re: The Discreet Charm of the DS [#permalink]

### Show Tags

20 Jun 2012, 07:05
vaibhavalw wrote:
Hi Bunuel,
Where can I find the AO and explainations. I can see them anywhere in the thread ?

Rgds

Switch view mode of the topic from "Best Reply" to "Oldest" and the links from the initial post (the-discreet-charm-of-the-ds-126962.html) will lead you to the posts with solutions.

Hope it helps.
_________________
Intern
Joined: 12 Jun 2012
Posts: 5
Followers: 0

Kudos [?]: 5 [0], given: 1

Re: The Discreet Charm of the DS [#permalink]

### Show Tags

20 Jun 2012, 09:20
Thanks a lot
Manager
Joined: 27 Apr 2012
Posts: 62
Location: United States
GMAT Date: 06-11-2013
GPA: 3.5
WE: Marketing (Consumer Products)
Followers: 1

Kudos [?]: 51 [0], given: 21

Re: The Discreet Charm of the DS [#permalink]

### Show Tags

21 Jun 2012, 04:38
Hi Bunuel,

Are you still giving kudos for posting detailed answers to these questions? Can I post my answers?

Thanks..
Math Expert
Joined: 02 Sep 2009
Posts: 36601
Followers: 7097

Kudos [?]: 93473 [0], given: 10563

Re: The Discreet Charm of the DS [#permalink]

### Show Tags

21 Jun 2012, 04:42
shivanigs wrote:
Hi Bunuel,

Are you still giving kudos for posting detailed answers to these questions? Can I post my answers?

Thanks..

Yes, please do post your solutions. For each correct explanation (with alternate approach) kudos point will be given.
_________________
Intern
Joined: 08 May 2012
Posts: 7
Followers: 0

Kudos [?]: 0 [0], given: 14

Re: The Discreet Charm of the DS [#permalink]

### Show Tags

22 Jun 2012, 14:46
For 12. If 6a=3b=7c, what is the value of a+b+c?
(1) ac=6b
(2) 5b=8a+4c

statement 2 i used 5b=8a+4c => 5x3b= 3x(8a +4c) ==> replace 3b with 6a given
5x6a=3x(8a+4c)
solved and got a=2c (now we know from question step that 6a=7c), so the only number for which this is posible is zero (hence the solution is B
Senior Manager
Joined: 07 Sep 2010
Posts: 336
Followers: 6

Kudos [?]: 664 [0], given: 136

Re: The Discreet Charm of the DS [#permalink]

### Show Tags

27 Jun 2012, 07:03
Hi Bunuel,

Can we solve this question using graphical approach.

Since (x-a)^2+(y-b)^2 = r^2 ----(A)

Equation 1 represents equation of circle with radius 1.

Now, if we can maximize the value of both x and y, we can get the maximum value of xy and that could let us know whether statement (1) is sufficient or not.

Here, I require your help. Intuitively, I find that x=y will maximize the equation x^2+y^2=1. But I am not sure about my reasoning as well as the Mathematics behind. Could you please look into this.

Thanks

Bunuel wrote:

Please read the thread. Solutions to ALL the questions are given on the previous pages.

2. Is xy<=1/2?

(1) x^2+y^2=1. Recall that $$(x-y)^2\geq{0}$$ (square of any number is more than or equal to zero) --> $$x^2-2xy+y^2\geq{0}$$ --> since $$x^2+y^2=1$$ then: $$1-2xy\geq{0}$$ --> $$xy\leq{\frac{1}{2}}$$. Sufficient.

(2) x^2-y^2=0 --> $$|x|=|y|$$. Clearly insufficient.

_________________

+1 Kudos me, Help me unlocking GMAT Club Tests

Math Expert
Joined: 02 Sep 2009
Posts: 36601
Followers: 7097

Kudos [?]: 93473 [0], given: 10563

Re: The Discreet Charm of the DS [#permalink]

### Show Tags

27 Jun 2012, 07:17
imhimanshu wrote:
Hi Bunuel,

Can we solve this question using graphical approach.

Since (x-a)^2+(y-b)^2 = r^2 ----(A)

Equation 1 represents equation of circle with radius 1.

Now, if we can maximize the value of both x and y, we can get the maximum value of xy and that could let us know whether statement (1) is sufficient or not.

Here, I require your help. Intuitively, I find that x=y will maximize the equation x^2+y^2=1. But I am not sure about my reasoning as well as the Mathematics behind. Could you please look into this.

Thanks

Bunuel wrote:

Please read the thread. Solutions to ALL the questions are given on the previous pages.

2. Is xy<=1/2?

(1) x^2+y^2=1. Recall that $$(x-y)^2\geq{0}$$ (square of any number is more than or equal to zero) --> $$x^2-2xy+y^2\geq{0}$$ --> since $$x^2+y^2=1$$ then: $$1-2xy\geq{0}$$ --> $$xy\leq{\frac{1}{2}}$$. Sufficient.

(2) x^2-y^2=0 --> $$|x|=|y|$$. Clearly insufficient.

Useful property: For given sum of two numbers, their product is maximized when they are equal.

(1) says that $$x^2+y^2=1$$. So, $$x^2y^2$$ will be maximized when $$x^2=y^2$$: $$x^2+x^2=1$$ --> $$x^2=\frac{1}{2}$$ --> the maximum value of $$x^2y^2$$ thus is $$\frac{1}{4}$$ and the maixmum value of $$xy$$ is $$\frac{1}{2}$$.

Hope it's clear.
_________________
Intern
Joined: 28 Feb 2012
Posts: 22
GMAT 1: 700 Q48 V39
WE: Information Technology (Computer Software)
Followers: 0

Kudos [?]: 11 [0], given: 3

Re: The Discreet Charm of the DS [#permalink]

### Show Tags

08 Jul 2012, 09:47
Bunuel wrote:
9. If x and y are negative numbers, is x<y?

(1) 3x + 4 < 2y + 3 --> $$3x<2y-1$$. $$x$$ can be some very small number for instance -100 and $$y$$ some large enough number for instance -3 and the answer would be YES, $$x<y$$ BUT if $$x=-2$$ and $$y=-2.1$$ then the answer would be NO, $$x>y$$. Not sufficient.

(2) 2x - 3 < 3y - 4 --> $$x<1.5y-\frac{1}{2}$$ --> $$x<y+(0.5y-\frac{1}{2})=y+negative$$ --> $$x<y$$ (as y+negative is "more negative" than y). Sufficient.

Bunuel, while solving (1), how do you know which nos to plugin in and test? Can you suggest some approach please? I got this one wrong because for the values I plugged in, I was always getting $$x<y$$
Intern
Joined: 24 Jun 2012
Posts: 5
GMAT Date: 08-08-2012
GPA: 3
Followers: 0

Kudos [?]: 5 [0], given: 2

Re: The Discreet Charm of the DS [#permalink]

### Show Tags

28 Jul 2012, 06:36
Bunuel wrote:
2. Is xy<=1/2?

(1) x^2+y^2=1. Recall that $$(x-y)^2\geq{0}$$ (square of any number is more than or equal to zero) --> $$x^2-2xy+y^2\geq{0}$$ --> since $$x^2+y^2=1$$ then: $$1-2xy\geq{0}$$ --> $$xy\leq{\frac{1}{2}}$$. Sufficient.

(2) x^2-y^2=0 --> $$|x|=|y|$$. Clearly insufficient.

Why we recalled $$(x-y)^2\geq{0}$$ ?
_________________

I hated every minute of training, but I said: "Don't quit. Suffer now and live the rest of your life as a champion."

Math Expert
Joined: 02 Sep 2009
Posts: 36601
Followers: 7097

Kudos [?]: 93473 [0], given: 10563

Re: The Discreet Charm of the DS [#permalink]

### Show Tags

29 Jul 2012, 00:55
AnanJammal wrote:
Bunuel wrote:
2. Is xy<=1/2?

(1) x^2+y^2=1. Recall that $$(x-y)^2\geq{0}$$ (square of any number is more than or equal to zero) --> $$x^2-2xy+y^2\geq{0}$$ --> since $$x^2+y^2=1$$ then: $$1-2xy\geq{0}$$ --> $$xy\leq{\frac{1}{2}}$$. Sufficient.

(2) x^2-y^2=0 --> $$|x|=|y|$$. Clearly insufficient.

Why we recalled $$(x-y)^2\geq{0}$$ ?

Because $$(x-y)^2\geq{0}$$ expands to $$x^2-2xy+y^2\geq{0}$$, which leads to $$1-2xy\geq{0}$$ (since $$x^2+y^2=1$$) and finally to $$xy\leq{\frac{1}{2}}$$.
_________________
Senior Manager
Joined: 15 Sep 2009
Posts: 271
GMAT 1: 750 Q V
Followers: 10

Kudos [?]: 69 [0], given: 6

Re: The Discreet Charm of the DS [#permalink]

### Show Tags

27 Aug 2012, 01:40
Bunuel wrote:
SOLUTIONS:

1. Bonnie can paint a stolen car in x hours, and Clyde can paint the same car in y hours. They start working simultaneously and independently at their respective constant rates at 9:45am. If both x and y are odd integers, is x=y?

Bonnie and Clyde when working together complete the painting of the car ins $$\frac{xy}{x+y}$$ hours (sum of the rates equal to the combined rate or reciprocal of total time: $$\frac{1}{x}+\frac{1}{y}=\frac{1}{T}$$ --> $$T=\frac{xy}{x+y}$$). Now, if $$x=y$$ then the total time would be: $$\frac{x^2}{2x}=\frac{x}{2}$$, since $$x$$ is odd then this time would be either an integer or integer/2: 0.5 hours, 1 hour, 1.5 hours, ....

(1) x^2+y^2<12 --> it's possible $$x$$ and $$y$$ to be odd and equal to each other if $$x=y=1$$ but it's also possible that $$x=1$$ and $$y=3$$ (or vise-versa). Not sufficient.

(2) Bonnie and Clyde complete the painting of the car at 10:30am --> they complete the job in 3/4 of an hour (45 minutes), since it's neither an integer nor integer/2 then $$x$$ and $$y$$ are not equal. Sufficient.

Hi Bunuel, since we know that, if x=y, then the total time taken by both working together is (x/2 or y/2), and since both x and y are odd, then the total time x/2 will be only non-integer, precisely, one-half of odd integers or mathematically stated, = Integer (both odd and even) + 0.5, eg. 0.5, 1.5, 2.5, 3.5, 4.5 etc. I don't think we can have integers at all. All that I have written is restricted to when x=y, of course.

Though everything else you wrote, including the final answer, is correct.....

What do you think?

Cheers,
Der alte Fritz
_________________

+1 Kudos me - I'm half Irish, half Prussian.

Intern
Joined: 14 Feb 2012
Posts: 18
GMAT 1: 620 Q49 V26
Followers: 0

Kudos [?]: 2 [0], given: 7

Re: The Discreet Charm of the DS [#permalink]

### Show Tags

28 Aug 2012, 01:57
1. Bonnie can paint a stolen car in x hours, and Clyde can paint the same car in y hours. They start working simultaneously and independently at their respective constant rates at 9:45am. If both x and y are odd integers, is x=y?
(1) x^2+y^2<12
(2) Bonnie and Clyde complete the painting of the car at 10:30am

From the question stem: 1. B and C both starts painting at 9:45. 2. x and y are odd numbers.

From stem1: x=1 or 3 and y=1 or 3 can satisfy the inequality. So, we can not attain the solution without other hints.
From stem2: B and C completed the painting on the same time. As, they started and completed on the same time, the required same amount of time to complete the painting task. So, x=y.

B is the answer.
Math Expert
Joined: 02 Sep 2009
Posts: 36601
Followers: 7097

Kudos [?]: 93473 [0], given: 10563

Re: The Discreet Charm of the DS [#permalink]

### Show Tags

28 Aug 2012, 03:22
OldFritz wrote:
Hi Bunuel, since we know that, if x=y, then the total time taken by both working together is (x/2 or y/2), and since both x and y are odd, then the total time x/2 will be only non-integer, precisely, one-half of odd integers or mathematically stated, = Integer (both odd and even) + 0.5, eg. 0.5, 1.5, 2.5, 3.5, 4.5 etc. I don't think we can have integers at all. All that I have written is restricted to when x=y, of course.

Though everything else you wrote, including the final answer, is correct.....

What do you think?

Cheers,
Der alte Fritz

Typo edited. Thank you.
_________________
Intern
Joined: 23 Aug 2012
Posts: 13
Followers: 0

Kudos [?]: 1 [0], given: 8

Re: The Discreet Charm of the DS [#permalink]

### Show Tags

04 Sep 2012, 19:34
piyushksharma wrote:
Bunuel wrote:
5. What is the value of integer x?

(1) 2x^2+9<9x --> factor qudratics: $$(x-\frac{3}{2})(x-3)<0$$ --> roots are $$\frac{3}{2}$$ and 3 --> "<" sign indicates that the solution lies between the roots: $$1.5<x<3$$ --> since there only integer in this range is 2 then $$x=2$$. Sufficient.

(2) |x+10|=2x+8 --> LHS is an absolute value, which is always non negative, hence RHS must also be non-negative: $$2x+8\geq{0}$$ --> $$x\geq{-4}$$, for this range $$x+10$$ is positive hence $$|x+10|=x+10$$ --> $$x+10=2x+8$$ --> $$x=2$$. Sufficient.

Hope it helps.

Hi bunuel,
Isn't |x+10|=2x+8 be written as
Either x+10=2x+8 or x+10=-(2x+8) ? and then this should be solved?

Hey not sure if you already understood bunuel's solution, but I didn't..i figured it out though according to the way we do it. just like you said solve for x+10=2x+8 or x+10=-(2x+8) ....once you get answers for x, just plug them into the original equation and see if they work..only x=2 works! so just make sure to check absolute value solutions after you find them
Intern
Joined: 27 Sep 2012
Posts: 1
Followers: 0

Kudos [?]: 0 [0], given: 3

Re: The Discreet Charm of the DS [#permalink]

### Show Tags

15 Nov 2012, 22:10
gmatDeep wrote:
Bunuel wrote:
9. If x and y are negative numbers, is x<y?

(1) 3x + 4 < 2y + 3 --> $$3x<2y-1$$. $$x$$ can be some very small number for instance -100 and $$y$$ some large enough number for instance -3 and the answer would be YES, $$x<y$$ BUT if $$x=-2$$ and $$y=-2.1$$ then the answer would be NO, $$x>y$$. Not sufficient.

(2) 2x - 3 < 3y - 4 --> $$x<1.5y-\frac{1}{2}$$ --> $$x<y+(0.5y-\frac{1}{2})=y+negative$$ --> $$x<y$$ (as y+negative is "more negative" than y). Sufficient.

Bunuel, while solving (1), how do you know which nos to plugin in and test? Can you suggest some approach please? I got this one wrong because for the values I plugged in, I was always getting $$x<y$$

I'm quite confused by the fundamental concept here. I sub in x = -1.1 and y = -1 (which makes x<y), and equation 2x - 3 < 3y - 4 doesn't work, but then if you switch them around, x = -1 and y = -1.1, the equation still doesn't work.

What are we trying to find with substituting in numbers here? I feel like I have tied a knot in my head. Someoone please help? Thanks.
Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 7125
Location: Pune, India
Followers: 2139

Kudos [?]: 13697 [0], given: 222

Re: The Discreet Charm of the DS [#permalink]

### Show Tags

06 Dec 2012, 22:19
Bunuel wrote:
1. Bonnie can paint a stolen car in x hours, and Clyde can paint the same car in y hours. They start working simultaneously and independently at their respective constant rates at 9:45am. If both x and y are odd integers, is x=y?

(1) x^2+y^2<12

(2) Bonnie and Clyde complete the painting of the car at 10:30am

Responding to a pm:

Time taken by Bonnie to complete one work = x hrs
Time taken by Clyde to complete one work = y hrs
x and y are odd integers i.e. they could take values such as 1/3/5/7/9/11...

Question: Is x = y? i.e. is the time taken by Bonnie equal to time taken by Clyde? i.e. is the speed of Bonnie equal to the speed of Clyde?

(1) x^2+y^2<12
This info is not related to work concepts. It's just number properties. x and y are odd integers.
If x = y = 1, this inequality is satisfied.
If x = 1 and y = 3, this inequality is satisfied.

This means x may or may not be equal to y. Not sufficient.

(2) Bonnie and Clyde complete the painting of the car at 10:30 am.r
Together, they take 45 mins to complete the painting of the car. This means, if their rate of work were the same, each one of them would have taken 1.5 hrs working alone. But their time taken is an integer value. We can say that they do not take the same time i.e. x is not equal to y. Hence this statement is sufficient to say $$x \neq y$$

_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for \$199

Veritas Prep Reviews

Senior Manager
Joined: 22 Nov 2010
Posts: 288
Location: India
GMAT 1: 670 Q49 V33
WE: Consulting (Telecommunications)
Followers: 5

Kudos [?]: 138 [0], given: 75

Re: The Discreet Charm of the DS [#permalink]

### Show Tags

07 Dec 2012, 07:41
VeritasPrepKarishma wrote:
Bunuel wrote:
1. Bonnie can paint a stolen car in x hours, and Clyde can paint the same car in y hours. They start working simultaneously and independently at their respective constant rates at 9:45am. If both x and y are odd integers, is x=y?

(1) x^2+y^2<12

(2) Bonnie and Clyde complete the painting of the car at 10:30am

Responding to a pm:

Time taken by Bonnie to complete one work = x hrs
Time taken by Clyde to complete one work = y hrs
x and y are odd integers i.e. they could take values such as 1/3/5/7/9/11...

Question: Is x = y? i.e. is the time taken by Bonnie equal to time taken by Clyde? i.e. is the speed of Bonnie equal to the speed of Clyde?

(1) x^2+y^2<12
This info is not related to work concepts. It's just number properties. x and y are odd integers.
If x = y = 1, this inequality is satisfied.
If x = 1 and y = 3, this inequality is satisfied.

This means x may or may not be equal to y. Not sufficient.

(2) Bonnie and Clyde complete the painting of the car at 10:30 am.r
Together, they take 45 mins to complete the painting of the car. This means, if their rate of work were the same, each one of them would have taken 1.5 hrs working alone. But their time taken is an integer value. We can say that they do not take the same time i.e. x is not equal to y. Hence this statement is sufficient to say $$x \neq y$$

Thanks a lot for your explanation and response to my pm
_________________

YOU CAN, IF YOU THINK YOU CAN

Senior Manager
Joined: 02 Sep 2012
Posts: 259
Location: United States
Concentration: Entrepreneurship, Finance
GMAT Date: 07-25-2013
GPA: 3.83
WE: Architecture (Computer Hardware)
Followers: 5

Kudos [?]: 179 [0], given: 99

Re: The Discreet Charm of the DS [#permalink]

### Show Tags

10 Dec 2012, 04:58
Bunnel,
Can you please explain once again why in 1st question statement2 is sufficient...If you dont mind.Thanks in adavance
_________________

"Giving kudos" is a decent way to say "Thanks" and motivate contributors. Please use them, it won't cost you anything

Math Expert
Joined: 02 Sep 2009
Posts: 36601
Followers: 7097

Kudos [?]: 93473 [0], given: 10563

Re: The Discreet Charm of the DS [#permalink]

### Show Tags

10 Dec 2012, 05:01
skamal7 wrote:
Bunnel,
Can you please explain once again why in 1st question statement2 is sufficient...If you dont mind.Thanks in adavance

You should tell me what didn't you understand in the solution provided.

Check other approaches here: the-discreet-charm-of-the-ds-126962-80.html#p1151803

Hope it helps.
_________________
Re: The Discreet Charm of the DS   [#permalink] 10 Dec 2012, 05:01

Go to page   Previous    1   2   3   4   5   6   7   8   9   10    Next  [ 187 posts ]

Similar topics Replies Last post
Similar
Topics:
244 New DS set!!! 130 10 Apr 2013, 07:10
1 DS - Common Factor 4 10 May 2011, 03:03
86 DS questions about standard deviation 41 27 Oct 2009, 15:36
66 Collection of 12 DS questions 78 17 Oct 2009, 17:45
87 Collection of 8 DS questions 50 13 Oct 2009, 19:16
Display posts from previous: Sort by

# The Discreet Charm of the DS

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group and phpBB SEO Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.