Find all School-related info fast with the new School-Specific MBA Forum

It is currently 22 Jul 2014, 05:29

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

The infinite sequence a1, a2,...,an is defined such that an

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Intern
Intern
User avatar
Joined: 23 Jan 2010
Posts: 28
Schools: Kellogg, Booth, Harvard, Wharton, Stanford
WE 1: Product Strategy
WE 2: Operations
WE 3: Entrepreneurship
Followers: 0

Kudos [?]: 1 [0], given: 1

The infinite sequence a1, a2,...,an is defined such that an [#permalink] New post 19 Feb 2010, 13:03
1
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  25% (low)

Question Stats:

80% (02:28) correct 20% (01:33) wrong based on 87 sessions
The infinite sequence a1, a2,...,an is defined such that an = (n+2) / n for all n ≥ 1. What is the product of the first 10 terms of the sequence?

(A) 45
(B) 66
(C) 90
(D) 121
(E) 132
[Reveal] Spoiler: OA
Manager
Manager
avatar
Joined: 26 May 2005
Posts: 210
Followers: 2

Kudos [?]: 62 [0], given: 1

GMAT Tests User
Re: PS Question 700 level - Need easy to solve this [#permalink] New post 19 Feb 2010, 13:09
nth term = (n+2) / n where n>=1

product of 1st 10 terms ... as you can see, the numeration of the first expression will be same as the denominator of the 3rd expression.

so that leaves us with denominato of the 1 st and 2 nd and numerators of the last and last but one terms

11 * 12 / 1 * 2 = 66

B
1 KUDOS received
GMAT Instructor
avatar
Joined: 24 Jun 2008
Posts: 967
Location: Toronto
Followers: 245

Kudos [?]: 628 [1] , given: 3

GMAT Tests User
Re: PS Question 700 level - Need easy to solve this [#permalink] New post 19 Feb 2010, 13:14
1
This post received
KUDOS
shuj00 wrote:
The infinite sequence a1, a2,...,an is defined such that an = (n+2) / n for all n ≥ 1. What is the product of the first 10 terms of the sequence?

(A) 45
(B) 66
(C) 90
(D) 121
(E) 132


It's very often a good idea in sequence questions to write down the first few terms; typically a pattern will emerge. Here we find each term by plugging n into the expression given:

a_1 = (1+2)/1 = 3/1
a_2 = (2 + 2)/2 = 4/2
a_3 = (3 + 2)/3= 5/3
...
a_9 = 11/9
a_10 = 12/10

Now, if we multiply the first 10 terms we have:

(3/1) * (4/2) * (5/3) * ... *(10/8)*(11/9)*(12/10) = (3*4*5*...*10*11*12)/(1*2*3*...*8*9*10)

Notice that almost the entire denominator can be canceled, leaving us with (11*12)/2 = 66.
_________________

Nov 2011: After years of development, I am now making my advanced Quant books and high-level problem sets available for sale. Contact me at ianstewartgmat at gmail.com for details.

Private GMAT Tutor based in Toronto

1 KUDOS received
Manager
Manager
avatar
Joined: 03 Aug 2010
Posts: 107
GMAT Date: 08-08-2011
Followers: 1

Kudos [?]: 14 [1] , given: 63

The infinite sequence a1, a2,...,an is defined such that an [#permalink] New post 15 Nov 2010, 17:19
1
This post received
KUDOS
The infinite sequence a1, a2,...,an is defined such that an = (n+2) / n for all n ≥ 1. What is the product of the first 10 terms of the sequence?

(A) 45
(B) 66
(C) 90
(D) 121
(E) 132
Expert Post
1 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4558
Location: Pune, India
Followers: 1026

Kudos [?]: 4442 [1] , given: 162

Re: Sum of consecutive terms [#permalink] New post 15 Nov 2010, 17:56
1
This post received
KUDOS
Expert's post
Yalephd wrote:
The infinite sequence a1, a2,...,an is defined such that an = (n+2) / n for all n ≥ 1. What is the product of the first 10 terms of the sequence?

(A) 45
(B) 66
(C) 90
(D) 121
(E) 132

Powering through this would take the full lenght of the GMAT (maybe not). Is there a quick way to solve this problem?


Look at the pattern:
an = \frac{(n + 2)}{n}
So a1 = 3/1
a2 = 4/2
a3 = 5/3
a4 = 6/4

Now when we multiply the first ten terms (n = 1 to 10), \frac{3}{1} * \frac{4}{2} * \frac{5}{3} * \frac{6}{4} * ...* \frac{11}{9} * \frac{12}{10}
denominators and numerators will get canceled, 3 with 3, 4 with 4 etc. Only the first two denominators and last two numerators will be left. The product will be 11*12/2 = 66
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Intern
Intern
avatar
Joined: 13 Oct 2010
Posts: 20
Followers: 0

Kudos [?]: 6 [0], given: 0

Re: Sum of consecutive terms [#permalink] New post 09 Dec 2010, 08:12
VeritasPrepKarishma wrote:
Yalephd wrote:
The infinite sequence a1, a2,...,an is defined such that an = (n+2) / n for all n ≥ 1. What is the product of the first 10 terms of the sequence?

(A) 45
(B) 66
(C) 90
(D) 121
(E) 132

Powering through this would take the full lenght of the GMAT (maybe not). Is there a quick way to solve this problem?


Look at the pattern:
an = \frac{(n + 2)}{n}
So a1 = 3/1
a2 = 4/2
a3 = 5/3
a4 = 6/4

Now when we multiply the first ten terms (n = 1 to 10), \frac{3}{1} * \frac{4}{2} * \frac{5}{3} * \frac{6}{4} * ...* \frac{11}{9} * \frac{12}{10}
denominators and numerators will get canceled, 3 with 3, 4 with 4 etc. Only the first two denominators and last two numerators will be left. The product will be 11*12/2 = 66



Since this is a sequence and seeing the pattern " increase of numerator and denominator by 1/1" we determine the next term.This part I understood. But fundamental thing that I have not yet grasped is how to visualise that the respective denominators and numerators actually cancel without enumerating them all. I had to list out all the fractions (just by adding 1/1 to the next) to see that they do cancel and what the final fractions would remain (though in matters of time I did not consume much time-few extra seconds). Is there a logic behind this visualisation ? Please advice.
Expert Post
1 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4558
Location: Pune, India
Followers: 1026

Kudos [?]: 4442 [1] , given: 162

Re: Sum of consecutive terms [#permalink] New post 09 Dec 2010, 11:04
1
This post received
KUDOS
Expert's post
helloanupam wrote:
VeritasPrepKarishma wrote:
Yalephd wrote:
The infinite sequence a1, a2,...,an is defined such that an = (n+2) / n for all n ≥ 1. What is the product of the first 10 terms of the sequence?

(A) 45
(B) 66
(C) 90
(D) 121
(E) 132

Powering through this would take the full lenght of the GMAT (maybe not). Is there a quick way to solve this problem?


Look at the pattern:
an = \frac{(n + 2)}{n}
So a1 = 3/1
a2 = 4/2
a3 = 5/3
a4 = 6/4

Now when we multiply the first ten terms (n = 1 to 10), \frac{3}{1} * \frac{4}{2} * \frac{5}{3} * \frac{6}{4} * ...* \frac{11}{9} * \frac{12}{10}
denominators and numerators will get canceled, 3 with 3, 4 with 4 etc. Only the first two denominators and last two numerators will be left. The product will be 11*12/2 = 66



Since this is a sequence and seeing the pattern " increase of numerator and denominator by 1/1" we determine the next term.This part I understood. But fundamental thing that I have not yet grasped is how to visualise that the respective denominators and numerators actually cancel without enumerating them all. I had to list out all the fractions (just by adding 1/1 to the next) to see that they do cancel and what the final fractions would remain (though in matters of time I did not consume much time-few extra seconds). Is there a logic behind this visualisation ? Please advice.


The nth term is (n+2)/n.

So I say, when I multiply terms, they will look like this:
\frac{[highlight](n+2)[/highlight]}{n} * \frac{(n+3)}{(n+1)} * \frac{(n+4)}{(n+2)} * \frac{(n+5)}{(n+3)} * ... * \frac{(n+12)}{(n+10)}
Watch what happens here. The numerator (n+2) of the 1st term has appeared in the denominator of the 3rd term so they will cancel out. So 2nd term will have numerator that is 1 more than the numerator of the 1st term and 4th term will have a denominator that is one more than the denominator of the 3rd term and hence they will be equal and will cancel out. This will continue till we run out of denominators to cancel. So even without enumerating, we know that we will be left with first two numerators and last two denominators.

(I wish I could strike the relevant terms with different colored lines but I haven't been able to figure out how to use other operators in fractions!)
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Manager
Manager
User avatar
Joined: 13 Jul 2010
Posts: 169
Followers: 1

Kudos [?]: 15 [0], given: 7

Re: Sum of consecutive terms [#permalink] New post 09 Dec 2010, 20:29
How do we know a1=1? we don't know the value of the first 10 terms? how can we assume a1=1? I didn't see that and was confused by the notation.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 18676
Followers: 3229

Kudos [?]: 22151 [0], given: 2599

Re: Sum of consecutive terms [#permalink] New post 09 Dec 2010, 23:56
Expert's post
gettinit wrote:
How do we know a1=1? we don't know the value of the first 10 terms? how can we assume a1=1? I didn't see that and was confused by the notation.


a_1 doesn't equal to 1, it equals to a_1=\frac{1+2}{1}=\frac{3}{1}.

The infinite sequence a1, a2,..., an is defined such that an = (n+2) / n for all n ≥ 1. What is the product of the first 10 terms of the sequence?
(A) 45
(B) 66
(C) 90
(D) 121
(E) 132

Stem gives the formula to get the terms of the sequences: a_n=\frac{n+2}{n} for ALL n\geq{1} (so starting from a_1). So:

a_1=\frac{1+2}{1}=\frac{3}{1};

a_2=\frac{2+2}{2}=\frac{4}{2};

a_3=\frac{3+2}{3}=\frac{5}{3};
...
a_{10}=\frac{10+2}{10}=\frac{12}{10};

The product of the first 10 terms of the sequence will equal: \frac{3}{1}*\frac{4}{2}*\frac{5}{3}*...*\frac{12}{10}=\frac{(3*4*5*6*6*8*9*10)*11*12}{1*2*(3*4*5*6*6*8*9*10)}=\frac{11*12}{2}=66.

Answer: B.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 13 Oct 2010
Posts: 20
Followers: 0

Kudos [?]: 6 [0], given: 0

Re: Sum of consecutive terms [#permalink] New post 10 Dec 2010, 04:39
Thanks Karishma. I took a couple of bounces before I understood from your explanation albeit in own fashion (and hopefully correct!).The way I understand is this- the first two denominators (n & n+1) do not have their mirror numerators and similarly the final two numerators (n+11) & (n+12) wont get to see their mirror denominator images as the process stops at denominator (n+10) and hence dont cancel out.
Expert Post
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4558
Location: Pune, India
Followers: 1026

Kudos [?]: 4442 [0], given: 162

Re: Sum of consecutive terms [#permalink] New post 10 Dec 2010, 04:52
Expert's post
gettinit wrote:
How do we know a1=1? we don't know the value of the first 10 terms? how can we assume a1=1? I didn't see that and was confused by the notation.


This is what is given to you in the question:
The infinite sequence a1, a2,...,an is defined such that an = (n+2) / n for all n ≥ 1.

The product of first 10 terms is asked.

Using the rule, an = (n+2) / n, you can find the nth term easily.
The first term will have n = 1
a1 = (1+2)/1 = 3/1
a2 = (2+2)/2 = 4/2
and so on...
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Expert Post
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4558
Location: Pune, India
Followers: 1026

Kudos [?]: 4442 [0], given: 162

Re: Sum of consecutive terms [#permalink] New post 10 Dec 2010, 04:54
Expert's post
helloanupam wrote:
Thanks Karishma. I took a couple of bounces before I understood from your explanation albeit in own fashion (and hopefully correct!).The way I understand is this- the first two denominators (n & n+1) do not have their mirror numerators and similarly the final two numerators (n+11) & (n+12) wont get to see their mirror denominator images as the process stops at denominator (n+10) and hence dont cancel out.


That's absolutely correct.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Senior Manager
Senior Manager
User avatar
Joined: 13 Aug 2012
Posts: 464
Concentration: Marketing, Finance
GMAT 1: Q V0
GPA: 3.23
Followers: 14

Kudos [?]: 178 [0], given: 11

GMAT ToolKit User GMAT Tests User
The infinite sequence a1, a2,...,an is defined such that an = (n [#permalink] New post 26 Dec 2012, 18:49
shuj00 wrote:
The infinite sequence a1, a2,...,an is defined such that an = (n+2) / n for all n ≥ 1. What is the product of the first 10 terms of the sequence?

(A) 45
(B) 66
(C) 90
(D) 121
(E) 132


Seeing that the series is a sequence of fractions.
Seeing that the question is asking about the product...
we know that factors will cancel out and easily reveal the answer.


3 * 2 * \frac{5}{3}*\frac{3}{2}*\frac{7}{5}*\frac{8}{6}*\frac{9}{7}*\frac{10}{8}*\frac{11}{9}*\frac{12}{10}

After carefully cancelling out we would be left with

11*6 = 66

Answer: B
_________________

Impossible is nothing to God.

SVP
SVP
User avatar
Joined: 09 Sep 2013
Posts: 1701
Followers: 162

Kudos [?]: 33 [0], given: 0

Premium Member
Re: The infinite sequence a1, a2,...,an is defined such that an [#permalink] New post 05 Jul 2014, 23:32
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Re: The infinite sequence a1, a2,...,an is defined such that an   [#permalink] 05 Jul 2014, 23:32
    Similar topics Author Replies Last post
Similar
Topics:
The infinite sequence a1, a2,...,an is defined such that an Yalephd 0 22 May 2014, 23:39
5 Experts publish their posts in the topic The infinite sequence a1, a2, …, an, … is such that a1=2 udaymathapati 11 30 Aug 2010, 09:26
1 The infinite sequence a1, a2,...,an is defined such that an Capthan 5 23 Jul 2008, 06:21
The infinite sequence a1, a2,..., an,... is such that a1 = nfa1rhp 2 03 Jul 2007, 05:57
Infinite Sequence The infinite sequence a1, a2, , an, is rbcola 7 21 Jun 2006, 16:12
Display posts from previous: Sort by

The infinite sequence a1, a2,...,an is defined such that an

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.