The infinite sequence a1, a2,...,an is defined such that an : GMAT Problem Solving (PS)
Check GMAT Club Decision Tracker for the Latest School Decision Releases http://gmatclub.com/AppTrack

 It is currently 18 Jan 2017, 07:47

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# The infinite sequence a1, a2,...,an is defined such that an

Author Message
TAGS:

### Hide Tags

Intern
Joined: 23 Jan 2010
Posts: 28
Schools: Kellogg, Booth, Harvard, Wharton, Stanford
WE 1: Product Strategy
WE 2: Operations
WE 3: Entrepreneurship
Followers: 0

Kudos [?]: 10 [0], given: 1

The infinite sequence a1, a2,...,an is defined such that an [#permalink]

### Show Tags

19 Feb 2010, 13:03
5
This post was
BOOKMARKED
00:00

Difficulty:

45% (medium)

Question Stats:

71% (02:55) correct 29% (02:03) wrong based on 430 sessions

### HideShow timer Statistics

The infinite sequence a1, a2,...,an is defined such that an = (n+2) / n for all n ≥ 1. What is the product of the first 10 terms of the sequence?

(A) 45
(B) 66
(C) 90
(D) 121
(E) 132
[Reveal] Spoiler: OA
Manager
Joined: 26 May 2005
Posts: 208
Followers: 2

Kudos [?]: 116 [2] , given: 1

Re: PS Question 700 level - Need easy to solve this [#permalink]

### Show Tags

19 Feb 2010, 13:09
2
KUDOS
nth term = (n+2) / n where n>=1

product of 1st 10 terms ... as you can see, the numeration of the first expression will be same as the denominator of the 3rd expression.

so that leaves us with denominato of the 1 st and 2 nd and numerators of the last and last but one terms

11 * 12 / 1 * 2 = 66

B
GMAT Tutor
Joined: 24 Jun 2008
Posts: 1183
Followers: 418

Kudos [?]: 1505 [2] , given: 4

Re: PS Question 700 level - Need easy to solve this [#permalink]

### Show Tags

19 Feb 2010, 13:14
2
KUDOS
Expert's post
1
This post was
BOOKMARKED
shuj00 wrote:
The infinite sequence a1, a2,...,an is defined such that an = (n+2) / n for all n ≥ 1. What is the product of the first 10 terms of the sequence?

(A) 45
(B) 66
(C) 90
(D) 121
(E) 132

It's very often a good idea in sequence questions to write down the first few terms; typically a pattern will emerge. Here we find each term by plugging n into the expression given:

a_1 = (1+2)/1 = 3/1
a_2 = (2 + 2)/2 = 4/2
a_3 = (3 + 2)/3= 5/3
...
a_9 = 11/9
a_10 = 12/10

Now, if we multiply the first 10 terms we have:

(3/1) * (4/2) * (5/3) * ... *(10/8)*(11/9)*(12/10) = (3*4*5*...*10*11*12)/(1*2*3*...*8*9*10)

Notice that almost the entire denominator can be canceled, leaving us with (11*12)/2 = 66.
_________________

GMAT Tutor in Toronto

If you are looking for online GMAT math tutoring, or if you are interested in buying my advanced Quant books and problem sets, please contact me at ianstewartgmat at gmail.com

Manager
Joined: 03 Aug 2010
Posts: 106
GMAT Date: 08-08-2011
Followers: 1

Kudos [?]: 67 [1] , given: 63

The infinite sequence a1, a2,...,an is defined such that an [#permalink]

### Show Tags

15 Nov 2010, 17:19
1
KUDOS
The infinite sequence a1, a2,...,an is defined such that an = (n+2) / n for all n ≥ 1. What is the product of the first 10 terms of the sequence?

(A) 45
(B) 66
(C) 90
(D) 121
(E) 132
Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 7121
Location: Pune, India
Followers: 2133

Kudos [?]: 13638 [2] , given: 222

Re: Sum of consecutive terms [#permalink]

### Show Tags

15 Nov 2010, 17:56
2
KUDOS
Expert's post
2
This post was
BOOKMARKED
Yalephd wrote:
The infinite sequence a1, a2,...,an is defined such that an = (n+2) / n for all n ≥ 1. What is the product of the first 10 terms of the sequence?

(A) 45
(B) 66
(C) 90
(D) 121
(E) 132

Powering through this would take the full lenght of the GMAT (maybe not). Is there a quick way to solve this problem?

Look at the pattern:
$$an = \frac{(n + 2)}{n}$$
So a1 = 3/1
a2 = 4/2
a3 = 5/3
a4 = 6/4

Now when we multiply the first ten terms (n = 1 to 10), $$\frac{3}{1} * \frac{4}{2} * \frac{5}{3} * \frac{6}{4} * ...* \frac{11}{9} * \frac{12}{10}$$
denominators and numerators will get canceled, 3 with 3, 4 with 4 etc. Only the first two denominators and last two numerators will be left. The product will be 11*12/2 = 66
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199 Veritas Prep Reviews Intern Joined: 13 Oct 2010 Posts: 20 Followers: 0 Kudos [?]: 16 [0], given: 0 Re: Sum of consecutive terms [#permalink] ### Show Tags 09 Dec 2010, 08:12 VeritasPrepKarishma wrote: Yalephd wrote: The infinite sequence a1, a2,...,an is defined such that an = (n+2) / n for all n ≥ 1. What is the product of the first 10 terms of the sequence? (A) 45 (B) 66 (C) 90 (D) 121 (E) 132 Powering through this would take the full lenght of the GMAT (maybe not). Is there a quick way to solve this problem? Look at the pattern: $$an = \frac{(n + 2)}{n}$$ So a1 = 3/1 a2 = 4/2 a3 = 5/3 a4 = 6/4 Now when we multiply the first ten terms (n = 1 to 10), $$\frac{3}{1} * \frac{4}{2} * \frac{5}{3} * \frac{6}{4} * ...* \frac{11}{9} * \frac{12}{10}$$ denominators and numerators will get canceled, 3 with 3, 4 with 4 etc. Only the first two denominators and last two numerators will be left. The product will be 11*12/2 = 66 Since this is a sequence and seeing the pattern " increase of numerator and denominator by 1/1" we determine the next term.This part I understood. But fundamental thing that I have not yet grasped is how to visualise that the respective denominators and numerators actually cancel without enumerating them all. I had to list out all the fractions (just by adding 1/1 to the next) to see that they do cancel and what the final fractions would remain (though in matters of time I did not consume much time-few extra seconds). Is there a logic behind this visualisation ? Please advice. Veritas Prep GMAT Instructor Joined: 16 Oct 2010 Posts: 7121 Location: Pune, India Followers: 2133 Kudos [?]: 13638 [1] , given: 222 Re: Sum of consecutive terms [#permalink] ### Show Tags 09 Dec 2010, 11:04 1 This post received KUDOS Expert's post helloanupam wrote: VeritasPrepKarishma wrote: Yalephd wrote: The infinite sequence a1, a2,...,an is defined such that an = (n+2) / n for all n ≥ 1. What is the product of the first 10 terms of the sequence? (A) 45 (B) 66 (C) 90 (D) 121 (E) 132 Powering through this would take the full lenght of the GMAT (maybe not). Is there a quick way to solve this problem? Look at the pattern: $$an = \frac{(n + 2)}{n}$$ So a1 = 3/1 a2 = 4/2 a3 = 5/3 a4 = 6/4 Now when we multiply the first ten terms (n = 1 to 10), $$\frac{3}{1} * \frac{4}{2} * \frac{5}{3} * \frac{6}{4} * ...* \frac{11}{9} * \frac{12}{10}$$ denominators and numerators will get canceled, 3 with 3, 4 with 4 etc. Only the first two denominators and last two numerators will be left. The product will be 11*12/2 = 66 Since this is a sequence and seeing the pattern " increase of numerator and denominator by 1/1" we determine the next term.This part I understood. But fundamental thing that I have not yet grasped is how to visualise that the respective denominators and numerators actually cancel without enumerating them all. I had to list out all the fractions (just by adding 1/1 to the next) to see that they do cancel and what the final fractions would remain (though in matters of time I did not consume much time-few extra seconds). Is there a logic behind this visualisation ? Please advice. The nth term is (n+2)/n. So I say, when I multiply terms, they will look like this: $$\frac{[highlight](n+2)[/highlight]}{n} * \frac{(n+3)}{(n+1)} * \frac{(n+4)}{(n+2)} * \frac{(n+5)}{(n+3)} * ... * \frac{(n+12)}{(n+10)}$$ Watch what happens here. The numerator (n+2) of the 1st term has appeared in the denominator of the 3rd term so they will cancel out. So 2nd term will have numerator that is 1 more than the numerator of the 1st term and 4th term will have a denominator that is one more than the denominator of the 3rd term and hence they will be equal and will cancel out. This will continue till we run out of denominators to cancel. So even without enumerating, we know that we will be left with first two numerators and last two denominators. (I wish I could strike the relevant terms with different colored lines but I haven't been able to figure out how to use other operators in fractions!) _________________ Karishma Veritas Prep | GMAT Instructor My Blog Get started with Veritas Prep GMAT On Demand for$199

Veritas Prep Reviews

Manager
Joined: 13 Jul 2010
Posts: 169
Followers: 1

Kudos [?]: 72 [0], given: 7

Re: Sum of consecutive terms [#permalink]

### Show Tags

09 Dec 2010, 20:29
How do we know a1=1? we don't know the value of the first 10 terms? how can we assume a1=1? I didn't see that and was confused by the notation.
Math Expert
Joined: 02 Sep 2009
Posts: 36545
Followers: 7076

Kudos [?]: 93081 [1] , given: 10542

Re: Sum of consecutive terms [#permalink]

### Show Tags

09 Dec 2010, 23:56
1
KUDOS
Expert's post
1
This post was
BOOKMARKED
gettinit wrote:
How do we know a1=1? we don't know the value of the first 10 terms? how can we assume a1=1? I didn't see that and was confused by the notation.

$$a_1$$ doesn't equal to 1, it equals to $$a_1=\frac{1+2}{1}=\frac{3}{1}$$.

The infinite sequence a1, a2,..., an is defined such that an = (n+2) / n for all n ≥ 1. What is the product of the first 10 terms of the sequence?
(A) 45
(B) 66
(C) 90
(D) 121
(E) 132

Stem gives the formula to get the terms of the sequences: $$a_n=\frac{n+2}{n}$$ for ALL $$n\geq{1}$$ (so starting from $$a_1$$). So:

$$a_1=\frac{1+2}{1}=\frac{3}{1}$$;

$$a_2=\frac{2+2}{2}=\frac{4}{2}$$;

$$a_3=\frac{3+2}{3}=\frac{5}{3}$$;
...
$$a_{10}=\frac{10+2}{10}=\frac{12}{10}$$;

The product of the first 10 terms of the sequence will equal: $$\frac{3}{1}*\frac{4}{2}*\frac{5}{3}*...*\frac{12}{10}=\frac{(3*4*5*6*6*8*9*10)*11*12}{1*2*(3*4*5*6*6*8*9*10)}=\frac{11*12}{2}=66$$.

Hope it's clear.
_________________
Intern
Joined: 13 Oct 2010
Posts: 20
Followers: 0

Kudos [?]: 16 [0], given: 0

Re: Sum of consecutive terms [#permalink]

### Show Tags

10 Dec 2010, 04:39
Thanks Karishma. I took a couple of bounces before I understood from your explanation albeit in own fashion (and hopefully correct!).The way I understand is this- the first two denominators (n & n+1) do not have their mirror numerators and similarly the final two numerators (n+11) & (n+12) wont get to see their mirror denominator images as the process stops at denominator (n+10) and hence dont cancel out.
Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 7121
Location: Pune, India
Followers: 2133

Kudos [?]: 13638 [0], given: 222

Re: Sum of consecutive terms [#permalink]

### Show Tags

10 Dec 2010, 04:52
gettinit wrote:
How do we know a1=1? we don't know the value of the first 10 terms? how can we assume a1=1? I didn't see that and was confused by the notation.

This is what is given to you in the question:
The infinite sequence a1, a2,...,an is defined such that an = (n+2) / n for all n ≥ 1.

The product of first 10 terms is asked.

Using the rule, an = (n+2) / n, you can find the nth term easily.
The first term will have n = 1
a1 = (1+2)/1 = 3/1
a2 = (2+2)/2 = 4/2
and so on...
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199 Veritas Prep Reviews Veritas Prep GMAT Instructor Joined: 16 Oct 2010 Posts: 7121 Location: Pune, India Followers: 2133 Kudos [?]: 13638 [0], given: 222 Re: Sum of consecutive terms [#permalink] ### Show Tags 10 Dec 2010, 04:54 helloanupam wrote: Thanks Karishma. I took a couple of bounces before I understood from your explanation albeit in own fashion (and hopefully correct!).The way I understand is this- the first two denominators (n & n+1) do not have their mirror numerators and similarly the final two numerators (n+11) & (n+12) wont get to see their mirror denominator images as the process stops at denominator (n+10) and hence dont cancel out. That's absolutely correct. _________________ Karishma Veritas Prep | GMAT Instructor My Blog Get started with Veritas Prep GMAT On Demand for$199

Veritas Prep Reviews

Senior Manager
Joined: 13 Aug 2012
Posts: 464
Concentration: Marketing, Finance
GMAT 1: Q V0
GPA: 3.23
Followers: 25

Kudos [?]: 433 [0], given: 11

The infinite sequence a1, a2,...,an is defined such that an = (n [#permalink]

### Show Tags

26 Dec 2012, 18:49
shuj00 wrote:
The infinite sequence a1, a2,...,an is defined such that an = (n+2) / n for all n ≥ 1. What is the product of the first 10 terms of the sequence?

(A) 45
(B) 66
(C) 90
(D) 121
(E) 132

Seeing that the series is a sequence of fractions.
we know that factors will cancel out and easily reveal the answer.

$$3 * 2 * \frac{5}{3}*\frac{3}{2}*\frac{7}{5}*\frac{8}{6}*\frac{9}{7}*\frac{10}{8}*\frac{11}{9}*\frac{12}{10}$$

After carefully cancelling out we would be left with

$$11*6 = 66$$

_________________

Impossible is nothing to God.

GMAT Club Legend
Joined: 09 Sep 2013
Posts: 13436
Followers: 575

Kudos [?]: 163 [0], given: 0

Re: The infinite sequence a1, a2,...,an is defined such that an [#permalink]

### Show Tags

05 Jul 2014, 23:32
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Club Legend
Joined: 09 Sep 2013
Posts: 13436
Followers: 575

Kudos [?]: 163 [0], given: 0

Re: The infinite sequence a1, a2,...,an is defined such that an [#permalink]

### Show Tags

16 Jul 2015, 18:13
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Club Legend
Joined: 09 Sep 2013
Posts: 13436
Followers: 575

Kudos [?]: 163 [0], given: 0

Re: The infinite sequence a1, a2,...,an is defined such that an [#permalink]

### Show Tags

02 Dec 2016, 01:09
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Re: The infinite sequence a1, a2,...,an is defined such that an   [#permalink] 02 Dec 2016, 01:09
Similar topics Replies Last post
Similar
Topics:
3 In the infinite sequence a1, a2, ..., an, an equals the sum of all pre 2 23 Nov 2016, 05:33
26 A sequence of numbers a1, a2, a3,…. is defined as follows: a1 = 3, a2 5 15 Jun 2016, 00:46
3 In the sequence a1,a2,…,an,…, an=n2 for all n>0. For what positive int 6 26 Jan 2015, 05:00
14 The sequence of numbers a1, a2, a3, ..., an is defined by an 5 09 Jun 2013, 04:31
18 The infinite sequence a1, a2, …, an, … is such that a1=2 10 30 Aug 2010, 09:26
Display posts from previous: Sort by