Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
The inside of a rectangular carton is 48 centimeters long, 3 [#permalink]
03 Sep 2012, 05:14
Expert's post
7
This post was BOOKMARKED
00:00
A
B
C
D
E
Difficulty:
15% (low)
Question Stats:
77% (04:22) correct
23% (01:16) wrong based on 593 sessions
Attachment:
Carton.png [ 12.46 KiB | Viewed 7002 times ]
The inside of a rectangular carton is 48 centimeters long, 32 centimeters wide, and 15 centimeters high. The carton is filled to capacity with k identical cylindrical cans of fruit that stand upright in rows and columns, as indicated in the figure above. If the cans are 15 centimeters high, what is the value of k?
(1) Each of the cans has a radius of 4 centimeters. (2) Six of the cans fit exactly along the length of the carton.
Practice Questions Question: 35 Page: 278 Difficulty: 600
Re: The inside of a rectangular carton is 48 centimeters long, 3 [#permalink]
03 Sep 2012, 05:14
1
This post received KUDOS
Expert's post
1
This post was BOOKMARKED
SOLUTION
The inside of a rectangular carton is 48 centimeters long, 32 centimeters wide, and 15 centimeters high. The carton is filled to capacity with k identical cylindrical cans of fruit that stand upright in rows and columns, as indicated in the figure above. If the cans are 15 centimeters high, what is the value of k?
(1) Each of the cans has a radius of 4 centimeters --> radius=4 means that diameter=8, which implies that along the 48 centimeter length of the carton 48/8=6 cans can be placed and along the 32 centimeter width of the carton 32/8=4 cans can be placed. Thus, k=6*4=24. Sufficient.
(2) Six of the cans fit exactly along the length of the carton --> the diameter of the can is 48/6=8 centimeters. So, we have the same info as above. Sufficient.
Re: The inside of a rectangular carton is 48 centimeters long, 3 [#permalink]
03 Sep 2012, 05:23
3
This post received KUDOS
Bunuel wrote:
The inside of a rectangular carton is 48 centimeters long, 32 centimeters wide, and 15 centimeters high. The carton is filled to capacity with k identical cylindrical cans of fruit that stand upright in rows and columns, as indicated in the figure above. If the cans are 15 centimeters high, what is the value of k?
(1) Each of the cans has a radius of 4 centimeters. (2) Six of the cans fit exactly along the length of the carton.
Since Height of Box and Height of Cans are equal so only one stack of cans is there in the box. No need to bother about height. So inside dimensions of Box = 48 X 32 St 1: Sufficient: Each can has radius of 4 = Dia is 8 cms. ie (48/8) 6 nos of cans can be in one row. And since cans are identical (32/8) ie 4 cans can fit in colums. So 24 nos of can can fit in box. St 2: Sufficient: 6 cans can fit along the length. ie dia of each can = 48/6 ie 8 cms. As discussed in St 1.
Re: The inside of a rectangular carton is 48 centimeters long, 3 [#permalink]
07 Sep 2012, 05:22
Expert's post
SOLUTION
The inside of a rectangular carton is 48 centimeters long, 32 centimeters wide, and 15 centimeters high. The carton is filled to capacity with k identical cylindrical cans of fruit that stand upright in rows and columns, as indicated in the figure above. If the cans are 15 centimeters high, what is the value of k?
(1) Each of the cans has a radius of 4 centimeters --> radius=4 means that diameter=8, which implies that along the 48 centimeter length of the carton 48/8=6 cans can be placed and along the 32 centimeter width of the carton 32/8=4 cans can be placed. Thus, k=6*4=24. Sufficient.
(2) Six of the cans fit exactly along the length of the carton --> the diameter of the can is 48/6=8 centimeters. So, we have the same info as above. Sufficient.
Answer: D.
Kudos points given to everyone with correct solution. Let me know if I missed someone. _________________
Re: The inside of a rectangular carton is 48 centimeters long, 3 [#permalink]
24 Apr 2013, 01:53
Bunuel wrote:
SOLUTION
The inside of a rectangular carton is 48 centimeters long, 32 centimeters wide, and 15 centimeters high. The carton is filled to capacity with k identical cylindrical cans of fruit that stand upright in rows and columns, as indicated in the figure above. If the cans are 15 centimeters high, what is the value of k?
(1) Each of the cans has a radius of 4 centimeters --> radius=4 means that diameter=8, which implies that along the 48 centimeter length of the carton 48/8=6 cans can be placed and along the 32 centimeter width of the carton 32/8=4 cans can be placed. Thus, k=6*4=24. Sufficient.
(2) Six of the cans fit exactly along the length of the carton --> the diameter of the can is 48/6=8 centimeters. So, we have the same info as above. Sufficient.
Answer: D.
Kudos points given to everyone with correct solution. Let me know if I missed someone.
I know the measurement of the carton, which is 48*32. Now the can's radius is 4 cm. Although the height of the carton is the same as the height of the cans i.e. 15, which I am ignoring as it will eventually cancel out in the calculation. My question is around the solution that is provided in the O.G. They have simply divided the length of the carton by diameter and width by diameter and then further multiplied the result.
(48/8)*(32/8) =6*4 =24.
Btw I got the right answer since its a DS problem. I am worried coz had this been a p.s problem, I might have got this one wrong. Now the way I would have solved this is
1st find the circumference of the circle (eliminating the height as the it is same). 2IIr=2*22/7*4 and then divided it by (48*32)/(176/7). My answer in this case is different from the OA =61.09
Why II (pie) was not considered. Why circumference was not considered instead of diameter. I failed to understand this. Can you please explain this.
Further when I use a formula for rectangle's area =L*B, where both lenght and breadth is present. But in case of circle I don't have a II(pie) anywhere. Why do we use this. What is the significance of II (pie).
Re: The inside of a rectangular carton is 48 centimeters long, 3 [#permalink]
24 Apr 2013, 04:38
Expert's post
davidfrank wrote:
Bunuel wrote:
SOLUTION
The inside of a rectangular carton is 48 centimeters long, 32 centimeters wide, and 15 centimeters high. The carton is filled to capacity with k identical cylindrical cans of fruit that stand upright in rows and columns, as indicated in the figure above. If the cans are 15 centimeters high, what is the value of k?
(1) Each of the cans has a radius of 4 centimeters --> radius=4 means that diameter=8, which implies that along the 48 centimeter length of the carton 48/8=6 cans can be placed and along the 32 centimeter width of the carton 32/8=4 cans can be placed. Thus, k=6*4=24. Sufficient.
(2) Six of the cans fit exactly along the length of the carton --> the diameter of the can is 48/6=8 centimeters. So, we have the same info as above. Sufficient.
Answer: D.
Kudos points given to everyone with correct solution. Let me know if I missed someone.
I know the measurement of the carton, which is 48*32. Now the can's radius is 4 cm. Although the height of the carton is the same as the height of the cans i.e. 15, which I am ignoring as it will eventually cancel out in the calculation. My question is around the solution that is provided in the O.G. They have simply divided the length of the carton by diameter and width by diameter and then further multiplied the result.
(48/8)*(32/8) =6*4 =24.
Btw I got the right answer since its a DS problem. I am worried coz had this been a p.s problem, I might have got this one wrong. Now the way I would have solved this is
1st find the circumference of the circle (eliminating the height as the it is same). 2IIr=2*22/7*4 and then divided it by (48*32)/(176/7). My answer in this case is different from the OA =61.09
Why II (pie) was not considered. Why circumference was not considered instead of diameter. I failed to understand this. Can you please explain this.
Further when I use a formula for rectangle's area =L*B, where both lenght and breadth is present. But in case of circle I don't have a II(pie) anywhere. Why do we use this. What is the significance of II (pie).
Why are you calculating the circumference? _________________
Re: The inside of a rectangular carton is 48 centimeters long, 3 [#permalink]
26 Apr 2013, 21:38
Bunuel wrote:
davidfrank wrote:
Bunuel wrote:
SOLUTION
The inside of a rectangular carton is 48 centimeters long, 32 centimeters wide, and 15 centimeters high. The carton is filled to capacity with k identical cylindrical cans of fruit that stand upright in rows and columns, as indicated in the figure above. If the cans are 15 centimeters high, what is the value of k?
(1) Each of the cans has a radius of 4 centimeters --> radius=4 means that diameter=8, which implies that along the 48 centimeter length of the carton 48/8=6 cans can be placed and along the 32 centimeter width of the carton 32/8=4 cans can be placed. Thus, k=6*4=24. Sufficient.
(2) Six of the cans fit exactly along the length of the carton --> the diameter of the can is 48/6=8 centimeters. So, we have the same info as above. Sufficient.
Answer: D.
Kudos points given to everyone with correct solution. Let me know if I missed someone.
I know the measurement of the carton, which is 48*32. Now the can's radius is 4 cm. Although the height of the carton is the same as the height of the cans i.e. 15, which I am ignoring as it will eventually cancel out in the calculation. My question is around the solution that is provided in the O.G. They have simply divided the length of the carton by diameter and width by diameter and then further multiplied the result.
(48/8)*(32/8) =6*4 =24.
Btw I got the right answer since its a DS problem. I am worried coz had this been a p.s problem, I might have got this one wrong. Now the way I would have solved this is
1st find the circumference of the circle (eliminating the height as the it is same). 2IIr=2*22/7*4 and then divided it by (48*32)/(176/7). My answer in this case is different from the OA =61.09
Why II (pie) was not considered. Why circumference was not considered instead of diameter. I failed to understand this. Can you please explain this.
Further when I use a formula for rectangle's area =L*B, where both lenght and breadth is present. But in case of circle I don't have a II(pie) anywhere. Why do we use this. What is the significance of II (pie).
Why are you calculating the circumference?
Hi Bunuel,
I am calculating the circumference because I know the area of the rectangular (ignoring the height 15 cm as it is common to both can and carton). Once I know the area, I can divide the area by circumference of the circle to know the no of cans.
Re: The inside of a rectangular carton is 48 centimeters long, 3 [#permalink]
27 Apr 2013, 04:32
Expert's post
davidfrank wrote:
Bunuel wrote:
davidfrank wrote:
I know the measurement of the carton, which is 48*32. Now the can's radius is 4 cm. Although the height of the carton is the same as the height of the cans i.e. 15, which I am ignoring as it will eventually cancel out in the calculation. My question is around the solution that is provided in the O.G. They have simply divided the length of the carton by diameter and width by diameter and then further multiplied the result.
(48/8)*(32/8) =6*4 =24.
Btw I got the right answer since its a DS problem. I am worried coz had this been a p.s problem, I might have got this one wrong. Now the way I would have solved this is
1st find the circumference of the circle (eliminating the height as the it is same). 2IIr=2*22/7*4 and then divided it by (48*32)/(176/7). My answer in this case is different from the OA =61.09
Why II (pie) was not considered. Why circumference was not considered instead of diameter. I failed to understand this. Can you please explain this.
Further when I use a formula for rectangle's area =L*B, where both lenght and breadth is present. But in case of circle I don't have a II(pie) anywhere. Why do we use this. What is the significance of II (pie).
Why are you calculating the circumference?
Hi Bunuel,
I am calculating the circumference because I know the area of the rectangular (ignoring the height 15 cm as it is common to both can and carton). Once I know the area, I can divide the area by circumference of the circle to know the no of cans.
It seems that you don't understand the question. You need neither circumference of the cans nor the area.
Simpler example might help:
Attachment:
Untitled.png [ 10.24 KiB | Viewed 4969 times ]
The carton is 16 centimeters long and 16 centimeters wide. If the diameter of the cans is 8 centimeters, how many cans can be placed in the carton? _________________
Re: The inside of a rectangular carton is 48 centimeters long, 3 [#permalink]
11 Sep 2014, 11:53
Hello from the GMAT Club BumpBot!
Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).
Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________
Re: The inside of a rectangular carton is 48 centimeters long, 3 [#permalink]
05 Oct 2014, 18:40
When I did this problem, I inadvertinly read over the specification desigmating, width, length and height. In this case 15 was the height, allowing us to cram the most amount of cyclinder cans.
Here is my question, if height was not deginated as 15 in the case, would the solution be E? ie, we have the 15×32×48 dimensions but we don't know what is length, width, height. E is what I came up with.
Posted from my mobile device
gmatclubot
Re: The inside of a rectangular carton is 48 centimeters long, 3
[#permalink]
05 Oct 2014, 18:40
As I’m halfway through my second year now, graduation is now rapidly approaching. I’ve neglected this blog in the last year, mainly because I felt I didn’...
Wow! MBA life is hectic indeed. Time flies by. It is hard to keep track of the time. Last week was high intense training Yeah, Finance, Accounting, Marketing, Economics...