Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

The members of a club were asked whether they speak [#permalink]
05 Aug 2007, 03:32

00:00

A

B

C

D

E

Difficulty:

(N/A)

Question Stats:

0% (00:00) correct
0% (00:00) wrong based on 0 sessions

The members of a club were asked whether they speak Cantonese, Mandarin and Japanese. 100 said that they spoke Cantonese, 150 said that they spoke Mandarin and 200 said that they spoke Japanese. 120 said that they spoke exactly two of the three languages. How many members does the club have?

(1) There are twice as many members who speak none of the languages as there are who speak all three languages.
(2) Half of the members who speak Japanese and Cantonese also speak Mandarin.

The members of a club were asked whether they speak Cantonese, Mandarin and Japanese. 100 said that they spoke Cantonese, 150 said that they spoke Mandarin and 200 said that they spoke Japanese. 120 said that they spoke exactly two of the three languages. How many members does the club have?

(1) There are twice as many members who speak none of the languages as there are who speak all three languages. (2) Half of the members who speak Japanese and Cantonese also speak Mandarin.

A for me.
Set x = number of people who speak all three languages.
(1) (100+150+200) - 120 - 2x + Neither = Total
Neither = 2x
We can cancel out the 2x in the equation; thus, find the total.
SUFFICIENT.

(2) Don't know anything about "Neither" information. INSUFFICIENT.

The members of a club were asked whether they speak Cantonese, Mandarin and Japanese. 100 said that they spoke Cantonese, 150 said that they spoke Mandarin and 200 said that they spoke Japanese. 120 said that they spoke exactly two of the three languages. How many members does the club have?

(1) There are twice as many members who speak none of the languages as there are who speak all three languages. (2) Half of the members who speak Japanese and Cantonese also speak Mandarin.

I take A here

Given that

Cantonese = 100
Mandarin = 150
Japanese = 200

Let x,y and z represent the ONLY 2 lanuages sections in the Venn diagram and "t " represent all three

So

Only Cantonsese = 100 - (x+y+t)
Only Mandarin = 150 - (x+z+t)
Only Japanese = 200 - (z+y+t)

Formula now goes as

Total = Only A + Only B + Only C + Only AB+ Only BC+ Only CA + ABC + None

The members of a club were asked whether they speak Cantonese, Mandarin and Japanese. 100 said that they spoke Cantonese, 150 said that they spoke Mandarin and 200 said that they spoke Japanese. 120 said that they spoke exactly two of the three languages. How many members does the club have?

(1) There are twice as many members who speak none of the languages as there are who speak all three languages. (2) Half of the members who speak Japanese and Cantonese also speak Mandarin.

A for me. Set x = number of people who speak all three languages. (1) (100+150+200) - 120 -2x + Neither = Total Neither = 2x [b] I think the highlighted sign shud be + and not -[/b] We can cancel out the 2x in the equation; thus, find the total. SUFFICIENT.

(2) Don't know anything about "Neither" information. INSUFFICIENT.

The answer has to be E

I am quite sure it is negative there...if you have sum of all the numbers, you have to subtract all the "repeats", then add neither to equal to total.

see when we calculate the doubles..it already takes into account the triple...i.e we have already minused the triple to get the doubles... so we cant deduct triple again cause we have already taken em into account..

bkk145 wrote:

fresinha12 wrote:

dont we add the singles, minus the doubles and add the triples????

kevincan wrote:

OA=A

If you can explain why you should add the triple, I'll see if I can say something...

The members of a club were asked whether they speak Cantonese, Mandarin and Japanese. 100 said that they spoke Cantonese, 150 said that they spoke Mandarin and 200 said that they spoke Japanese. 120 said that they spoke exactly two of the three languages. How many members does the club have?

(1) There are twice as many members who speak none of the languages as there are who speak all three languages. (2) Half of the members who speak Japanese and Cantonese also speak Mandarin.

I take A here

Given that

Cantonese = 100 Mandarin = 150 Japanese = 200

Let x,y and z represent the ONLY 2 lanuages sections in the Venn diagram and "t " represent all three

So

Only Cantonsese = 100 - (x+y+t) Only Mandarin = 150 - (x+z+t) Only Japanese = 200 - (z+y+t)

Formula now goes as

Total = Only A + Only B + Only C + Only AB+ Only BC+ Only CA + ABC + None

see when we calculate the doubles..it already takes into account the triple...i.e we have already minused the triple to get the doubles... so we cant deduct triple again cause we have already taken em into account..

bkk145 wrote:

fresinha12 wrote:

dont we add the singles, minus the doubles and add the triples????

kevincan wrote:

OA=A

If you can explain why you should add the triple, I'll see if I can say something...

No, double doesn't take triple into account. They are different. If the question say something like "two or more languages", then it would take triple into account. But this problem said specifically that exactly two languages.

in a 3 set venn diagram...say C for chinese, M for Mandarian and J for Japense

120 speak exactly 2 languages...is equal to the sum of intersect of C n J, C n M and J n M...?? right if thats the case then 120 has already minused the number of people who speak C+J+M, correct?

bkk145 wrote:

fresinha12 wrote:

Here is why i say we add the triple..

see when we calculate the doubles..it already takes into account the triple...i.e we have already minused the triple to get the doubles... so we cant deduct triple again cause we have already taken em into account..

bkk145 wrote:

fresinha12 wrote:

dont we add the singles, minus the doubles and add the triples????

kevincan wrote:

OA=A

If you can explain why you should add the triple, I'll see if I can say something...

No, double doesn't take triple into account. They are different. If the question say something like "two or more languages", then it would take triple into account. But this problem said specifically that exactly two languages.

in a 3 set venn diagram...say C for chinese, M for Mandarian and J for Japense

120 speak exactly 2 languages...is equal to the sum of intersect of C n J, C n M and J n M...?? right if thats the case then 120 has already minused the number of people who speak C+J+M, correct?

bkk145 wrote:

fresinha12 wrote:

Here is why i say we add the triple..

see when we calculate the doubles..it already takes into account the triple...i.e we have already minused the triple to get the doubles... so we cant deduct triple again cause we have already taken em into account..

bkk145 wrote:

fresinha12 wrote:

dont we add the singles, minus the doubles and add the triples????

kevincan wrote:

OA=A

If you can explain why you should add the triple, I'll see if I can say something...

No, double doesn't take triple into account. They are different. If the question say something like "two or more languages", then it would take triple into account. But this problem said specifically that exactly two languages.

That's right. Let's look at something more simple and neglect "neither" at this point.
1) Say 2 people speak Chinese, 2 people speaker Mandarin, and 2 people speak Japanese. Say 3 speak "exactly two languages". Let x = people who speaker all three languages, we have:
2+2+2-3-2x = people who speak one language

2) If 3 people speak "two languages or more", then 2+2+2-3-x = people who speak only one language.

Notice the "2" factor is missing in the second one. The idea here is that if you speak two languages, then it overlap one time. If you speak all, then it overlap two times.

I hope I didn't confuse you even more. I think my reasoning is right, but feel free to correct if anyone disagree.