Find all School-related info fast with the new School-Specific MBA Forum

It is currently 19 Oct 2014, 20:41

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

The mode of a set of integers is x. what is the difference

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Manager
Manager
avatar
Joined: 29 Nov 2011
Posts: 81
Followers: 1

Kudos [?]: 71 [0], given: 37

The mode of a set of integers is x. what is the difference [#permalink] New post 20 Sep 2012, 04:05
3
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  85% (hard)

Question Stats:

28% (02:08) correct 72% (00:50) wrong based on 78 sessions
The mode of a set of integers is x. what is the difference between the median of this set of integers and x?

(1) The difference between any two integers in the set is less than 3.
(2) The average of the set of integers s x.
[Reveal] Spoiler: OA
Director
Director
User avatar
Joined: 22 Mar 2011
Posts: 613
WE: Science (Education)
Followers: 73

Kudos [?]: 527 [0], given: 43

Re: The mode of a set of integers is x. what is the difference [#permalink] New post 20 Sep 2012, 10:01
ChrisGMATPrepster wrote:
This question seems to be flawed in my mind.

Statement 1 intends to tell you that this is a consecutive set of multiples of 3 (the consecutive nature would make the mean equal to the median)

Statement 2 intends to tell you that the mode is equal to the average.

This leads you to C

HOWEVER, this information cannot be true because all numbers would be the mode if they were each separated by 3. So the true answer is E, but the information is not presented correctly.


Statement 1 intends to tell you that this is a consecutive set of multiples of 3 - NO.
The statement is "the difference between any two integers in the set is less than 3"
Because all the numbers are integers, then the positive difference between any two can be 0,1 or 2.
_________________

PhD in Applied Mathematics
Love GMAT Quant questions and running.


Last edited by EvaJager on 20 Sep 2012, 10:25, edited 1 time in total.
1 KUDOS received
GMAT Instructor
avatar
Joined: 24 Jun 2008
Posts: 978
Location: Toronto
Followers: 262

Kudos [?]: 703 [1] , given: 3

Re: The mode of a set of integers is x. what is the difference [#permalink] New post 20 Sep 2012, 12:37
1
This post received
KUDOS
ChrisGMATPrepster wrote:
HOWEVER, this information cannot be true because all numbers would be the mode if they were each separated by 3. So the true answer is E, but the information is not presented correctly.


I guess someone already pointed out that Statement 1 does not tell you your numbers are consecutive multiples of 3. It says that no two numbers are more than 2 apart. And in your comment following the 'HOWEVER', if every element in a set occurs exactly once, then the set is said to have no mode at all. For a set to have a mode, some element needs to appear more often than at least one other element. So sets like {1, 3, 5} and {3, 3, 4, 4} have no mode, because they do not contain any element which appears more often than some other element in the set.

In this question, neither statement is sufficient alone. For Statement 1, our set could be {1, 2, 2, 3}, and then the median and mode are equal, or it could be {1, 2, 3, 3}, and our median and mode are different. For Statement 2, again our set could be {1, 2, 2, 3}, and our median and mode can be equal, but our set could be {1, 2, 3, 4, 4, 10}, and our median and mode are different.

Now, using both statements together, if the mean is equal to the mode, then the mean must be equal to some value in the set. Technically, if all the values were the same, there'd be no mode, and we cannot have only two values exactly 1 apart, because then the mean would not be an integer, and thus would not be in the set. So we must have at least two values which are exactly 2 apart. Let's call them s-1 and s+1. So, our set has some elements equal to s-1, possibly some elements equal to s, and some elements equal to s+1, for some integer s. Notice now that the mean needs to be in the set, so must be s-1, s or s+1. But the mean can't be s-1, since s-1 is the smallest element in the set, and we have elements larger than s-1 in the set. Similarly the mean can't be s+1. So the mean, and therefore the mode, need to be equal to s. And for the mean to be equal to s, the number of elements equal to s-1 must be equal to the number of elements equal to s+1. So our set must be symmetric, and the median must also be s. So the median and mode are the same, and the two Statements together are sufficient.

edit: I'd add that I don't think I've ever seen a real GMAT question that even mentions the mode, let alone one as tedious to solve as this question, so it probably isn't all that important to study.
_________________

Nov 2011: After years of development, I am now making my advanced Quant books and high-level problem sets available for sale. Contact me at ianstewartgmat at gmail.com for details.

Private GMAT Tutor based in Toronto

1 KUDOS received
Director
Director
User avatar
Joined: 22 Mar 2011
Posts: 613
WE: Science (Education)
Followers: 73

Kudos [?]: 527 [1] , given: 43

Re: The mode of a set of integers is x. what is the difference [#permalink] New post 20 Sep 2012, 12:59
1
This post received
KUDOS
Smita04 wrote:
The mode of a set of integers is x. what is the difference between the median of this set of integers and x?

1) the difference between any two integers in the set is less than 3.
2) the average of the set of integers s x.



(1) Consider the following two sets:
{x, x, x} and (x, x, x+1, x+2}
Not sufficient.

(2) Now consider the following two sets:
{x, x, x} and {x-3, x-2, x-1, x, x, x+6}
Again, not sufficient.

(1) and (2) together:
If all the numbers in the set are equal to x, then the difference between the median and the mode x is 0.
If not all the numbers are equal to x and because the average is x, there must be some numbers below as well as above the average. Since the range cannot be greater than 2, additional values in the set must be x-1 and x+1. In order to obtain the average x, we must have the number of terms equal to x-1 the same as the number of terms equal to x+1. So, our set consists of a symmetrical set of numbers around x.
Therefore, the median is x, and the requested difference is 0.

Sufficient.

Answer C.
_________________

PhD in Applied Mathematics
Love GMAT Quant questions and running.

Intern
Intern
avatar
Status: gmat fresher
Joined: 07 Jun 2012
Posts: 25
GPA: 3.87
Followers: 6

Kudos [?]: 154 [0], given: 12

Re: The mode of a set of integers is x. what is the difference [#permalink] New post 21 Sep 2012, 03:32
St1:
Let set of integers be {x,x,x+1,x+2,x+2}
mode=x
median=x+1
diff=1
Another set of intergers {x-1,x,x,x,x+1}
mode=x
median=x
diff=0-----two diff values(Hence Insufficient)
St2:
Let set of integers be {x-5,x,x,x,x+5}
mode=x
median=x
diff=0
Another set of integers be {x-15,x,x,x+1,x+2,x+3,x+9}
mode=x
median=x+1
diff=1---two diff values(Hence Insufficient)

St1&St2:Let the set of integers be {x-1,x,x,x,x+1}
mode=x
median=x
diff=0
Intern
Intern
avatar
Joined: 30 Oct 2011
Posts: 43
Followers: 0

Kudos [?]: 3 [0], given: 12

Mode - level:700-800 [#permalink] New post 13 Nov 2012, 21:19
The mode of a set of integers is x. What is the difference between the median of this set of integers and x?
(1) The difference between any two integers in the set is less than 3.
(2) The average of the set of integers is x.

Please explain. Thanks !

Last edited by mneeti on 13 Nov 2012, 23:30, edited 1 time in total.
1 KUDOS received
Moderator
Moderator
User avatar
Joined: 02 Jul 2012
Posts: 1227
Location: India
Concentration: Strategy
GMAT 1: 740 Q49 V42
GPA: 3.8
WE: Engineering (Energy and Utilities)
Followers: 67

Kudos [?]: 716 [1] , given: 116

Premium Member
Re: Mode - level:700-800 [#permalink] New post 13 Nov 2012, 22:27
1
This post received
KUDOS
mneeti wrote:
The mode of a set of integers is x. What is the difference between the median of this set of integers and x?
(1) The difference between any two integers in the set is less than 3.
(2) The average of the set of integers is x.

The OA is C, but I do not get how. Please explain. Thanks !


1) Set could be (1,2,3,3), Difference = 3 - 2.25 = 0.75
or set could be (1,1,1), Difference = 1 - 1 = 0
Insufficient.

2)Set could be (-10,0,0,1,2,3,4), Difference = 1
or set could be (1,1,1), Difference = 1 - 1 = 0
Insufficient.

1 & 2 together Mean and mode are the same, so the mean has to be a number in the set. Also, the range cannot be more than 2. Hence only a set with the mode and the median being the same can satisfy such a condition. ie a set with the same number repeted in the middle with the highest and lowest being at the same distance from the middle number.

Sufficient. Answer is C. Although I doub whther I would have come up with this if i had not seen the OA. Would help if you could spoiler hide it.

Kudos Please... If my post helped.
_________________

Did you find this post helpful?... Please let me know through the Kudos button.

Thanks To The Almighty - My GMAT Debrief

GMAT Reading Comprehension: 7 Most Common Passage Types


Last edited by MacFauz on 14 Nov 2012, 03:40, edited 2 times in total.
Expert Post
1 KUDOS received
Verbal Forum Moderator
Verbal Forum Moderator
User avatar
Status: Preparing for the another shot...!
Joined: 03 Feb 2011
Posts: 1425
Location: India
Concentration: Finance, Marketing
GPA: 3.75
Followers: 128

Kudos [?]: 642 [1] , given: 62

GMAT ToolKit User Premium Member
Re: Mode - level:700-800 [#permalink] New post 13 Nov 2012, 23:08
1
This post received
KUDOS
Expert's post
MacFauz wrote:
mneeti wrote:
The mode of a set of integers is x. What is the difference between the median of this set of integers and x?
(1) The difference between any two integers in the set is less than 3.
(2) The average of the set of integers is x.

The OA is C, but I do not get how. Please explain. Thanks !


1) Set could be (1,2,3,3), Difference = 3 - 2.25 = 0.75or set could be (1,1,1), Difference = 1 - 1 = 0
Insufficient.

2)Set could be (-10,0,0,1,2,3,4), Difference = 1
or set could be (1,1,1), Difference = 1 - 1 = 0
Insufficient.

1 & 2 together Mean and mode are the same, so the mean has to be a number in the set. Also, the range cannot be more than 2. Hence only a set with the mode and the median being the same can satisfy such a condition. ie a set with the same number repeted in the middle with the highest and lowest being at the same distance from the middle number.

Sufficient. Answer is C. Although I doub whther I would have come up with this if i had not seen the OA. Would help if you could spoiler hide it.

Kudos Please... If my post helped.


Hii MacFauz...
I guess there is a typo in the red part. The median of a set consisting of even number of elements is the average of (n/2) th term + {(n/2)+1} th term.
So 2.25 must be 2.5.
Rest of the solution is just fantastic.

I went with an alternative approach.
1)The difference between any two integers in the set is less than 3. This can only happen in two cases.
i) When the set consists of same element.
ii) When the set consists of 3 consecutive integers. Note that when the set consists of only distinct integers, then all the integers are modes.
Two cases insufficient.
2) The average of the set of integers is x.
Not sufficient to answer the asked question.
On combining ,
either the set consists of same elements with the same number being the mode
OR
the set consists of consecutive elements. ex-{1,2,3}. In the given example, the modes are 1, 2 and 3. But as per the statement, the mode is x. What can be x?
Hence the previous case is considerd where the elements are same. Therefore difference would be 0.
C.
Hope that helps.

P.S. Please use spoiler to hide the OA.
_________________

Prepositional Phrases Clarified|Elimination of BEING| Absolute Phrases Clarified
Rules For Posting
www.Univ-Scholarships.com


Last edited by Marcab on 13 Nov 2012, 23:12, edited 1 time in total.
Moderator
Moderator
User avatar
Joined: 02 Jul 2012
Posts: 1227
Location: India
Concentration: Strategy
GMAT 1: 740 Q49 V42
GPA: 3.8
WE: Engineering (Energy and Utilities)
Followers: 67

Kudos [?]: 716 [0], given: 116

Premium Member
Re: Mode - level:700-800 [#permalink] New post 13 Nov 2012, 23:12
Marcab wrote:
MacFauz wrote:
mneeti wrote:
The mode of a set of integers is x. What is the difference between the median of this set of integers and x?
(1) The difference between any two integers in the set is less than 3.
(2) The average of the set of integers is x.

The OA is C, but I do not get how. Please explain. Thanks !


1) Set could be (1,2,3,3), Difference = 3 - 2.25 = 0.75or set could be (1,1,1), Difference = 1 - 1 = 0
Insufficient.

2)Set could be (-10,0,0,1,2,3,4), Difference = 1
or set could be (1,1,1), Difference = 1 - 1 = 0
Insufficient.

1 & 2 together Mean and mode are the same, so the mean has to be a number in the set. Also, the range cannot be more than 2. Hence only a set with the mode and the median being the same can satisfy such a condition. ie a set with the same number repeted in the middle with the highest and lowest being at the same distance from the middle number.

Sufficient. Answer is C. Although I doub whther I would have come up with this if i had not seen the OA. Would help if you could spoiler hide it.

Kudos Please... If my post helped.


Hii MacFauz...
I guess there is a typo in the red part. The median of a set consisting of even number of elements is the average of \frac{n}{2 th term + {(n/2)+1}th term}.
So 2.25 must be 2.5.
Rest of the solution is just fantastic.

I went with an alternative approach.
1)The difference between any two integers in the set is less than 3. This can only happen in two cases.
i) When the set consists of same element.
ii) When the set consists of 3 consecutive integers. Note that when the set consists of only distinct integers, then all the integers are modes.
Two cases insufficient.
2) The average of the set of integers is x.
Not sufficient to answer the asked question.
On combining ,
either the set consists of same elements with the same number being the mode
OR
the set consists of consecutive elements. ex-{1,2,3}. In the given example, the modes are 1, 2 and 3. But as per the statement, the mode is x. What can be x?
Hence the previous case is considerd where the elements are same. Therefore difference would be 0.
C.
Hope that helps.

P.S. Please use spoiler to hide the OA.

Thanks Marcab... I've changed that now.. And it was not a typo.. I tend to make these silly mathematical mistakes :oops:
_________________

Did you find this post helpful?... Please let me know through the Kudos button.

Thanks To The Almighty - My GMAT Debrief

GMAT Reading Comprehension: 7 Most Common Passage Types

Expert Post
Verbal Forum Moderator
Verbal Forum Moderator
User avatar
Status: Preparing for the another shot...!
Joined: 03 Feb 2011
Posts: 1425
Location: India
Concentration: Finance, Marketing
GPA: 3.75
Followers: 128

Kudos [?]: 642 [0], given: 62

GMAT ToolKit User Premium Member
Re: The mode of a set of integers is x. What is the difference [#permalink] New post 13 Nov 2012, 23:37
Expert's post
1)The difference between any two integers in the set is less than 3. This can only happen in two cases.
i) When the set consists of same element.
ii) When the set consists of 3 consecutive integers. Note that when the set consists of only distinct integers, then all the integers are modes.
Two cases insufficient.
2) The average of the set of integers is x.
Not sufficient to answer the asked question.
On combining ,
either the set consists of same elements with the same number being the mode
OR
the set consists of consecutive elements. ex-{1,2,3}. In the given example, the modes are 1, 2 and 3. But as per the statement, the mode is x. What can be x?
Hence the previous case is considerd where the elements are same. Therefore difference would be 0.
C.
Hope that helps.
_________________

Prepositional Phrases Clarified|Elimination of BEING| Absolute Phrases Clarified
Rules For Posting
www.Univ-Scholarships.com

Intern
Intern
avatar
Joined: 30 Oct 2011
Posts: 43
Followers: 0

Kudos [?]: 3 [0], given: 12

Re: Mode - level:700-800 [#permalink] New post 13 Nov 2012, 23:53
Thanks MacFauz and Marcab.. both the approaches are pretty helpful !! :-D
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23324
Followers: 3599

Kudos [?]: 28573 [0], given: 2803

Re: Mode - level:700-800 [#permalink] New post 14 Nov 2012, 01:35
Expert's post
mneeti wrote:
The mode of a set of integers is x. What is the difference between the median of this set of integers and x?
(1) The difference between any two integers in the set is less than 3.
(2) The average of the set of integers is x.

Please explain. Thanks !


Merging similar topics. Please refer to the solutions above.

Also, please read carefully and follow: rules-for-posting-please-read-this-before-posting-133935.html Pay attention to the rules #1 and 3. Thank you.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 18 Jun 2012
Posts: 44
Followers: 1

Kudos [?]: 3 [0], given: 15

Re: The mode of a set of integers is x. what is the difference [#permalink] New post 25 Jun 2013, 23:38
Hi

I read in one of my quant preparation book for CAT (a management test conducted in India) that
mode = 3 Median - 2 Mean

If we go by that rule:
mode + 2 mean = 3 Median

Mode = x (given in question)
Mean = x (given in statement b)
thrfore : x +2x = 3 Median
hence Median = x
so stateent B alone is sufficient to answer the question.

Correct me if I am wrong.
CEO
CEO
User avatar
Joined: 09 Sep 2013
Posts: 2782
Followers: 206

Kudos [?]: 42 [0], given: 0

Premium Member
Re: The mode of a set of integers is x. what is the difference [#permalink] New post 24 Aug 2014, 02:36
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Re: The mode of a set of integers is x. what is the difference   [#permalink] 24 Aug 2014, 02:36
    Similar topics Author Replies Last post
Similar
Topics:
Experts publish their posts in the topic What is the mode in each of the sets below? gmatter0913 1 28 Jan 2012, 07:33
What is the greatest integer in a set of five different jamifahad 5 12 May 2011, 01:23
Experts publish their posts in the topic X Y and Z are positive integers. How many different sets (X, bmwhype2 1 21 Nov 2007, 05:22
What will be the mode of following set ( 1, 2, 3, 4,5) 2. davvy75 3 26 Jul 2006, 00:34
If all members of Set X are positive integers, what is the kevincan 6 09 Jul 2006, 03:29
Display posts from previous: Sort by

The mode of a set of integers is x. what is the difference

  Question banks Downloads My Bookmarks Reviews Important topics  


cron

GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.