Find all School-related info fast with the new School-Specific MBA Forum

 It is currently 29 Jun 2016, 01:12

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# The number of water lilies on a certain lake doubles every

Author Message
TAGS:

### Hide Tags

Intern
Joined: 10 Jun 2012
Posts: 14
Followers: 0

Kudos [?]: 32 [1] , given: 66

The number of water lilies on a certain lake doubles every [#permalink]

### Show Tags

21 Nov 2012, 22:18
1
KUDOS
17
This post was
BOOKMARKED
00:00

Difficulty:

95% (hard)

Question Stats:

43% (02:29) correct 57% (01:27) wrong based on 345 sessions

### HideShow timer Statistics

The number of water lilies on a certain lake doubles every two days. If there is exactly one water lily on the lake, it takes 60 days for the lake to be fully covered with water lilies. In how many days will the lake be fully covered with lilies, if initially there were two water lilies on it?

(A) 15
(B) 28
(C) 30
(D) 58
(E) 59
[Reveal] Spoiler: OA

Last edited by Bunuel on 09 Mar 2014, 06:49, edited 1 time in total.
Math Expert
Joined: 02 Sep 2009
Posts: 33552
Followers: 5945

Kudos [?]: 73781 [3] , given: 9903

Re: The number of water lilies on a certain lake doubles every [#permalink]

### Show Tags

22 Nov 2012, 05:18
3
KUDOS
Expert's post
nawaab wrote:
rainbooow wrote:
The number of water lilies on a certain lake doubles every two days. If there is exactly one water lily on the lake, it takes 60 days for the lake to be fully covered with water lilies. In how many days will the lake be fully covered with lilies, if initially there were two water lilies on it?

(A) 15

(B) 28

(C) 30

(D) 58

(E) 59

Starting from 1 Water Lilly it takes 60 days.
If there are already two present, it can be taken as the first day is over.
It will take 59 more days.

Notice that we are told that "the number of water lilies on a certain lake doubles every two days", thus if initially there were two water lilies instead of one, we can consider that two days are over and therefore only 58 days are left.

Similar question to practice: it-takes-30-days-to-fill-a-laboratory-dish-with-bacteria-140269.html

Hope it helps.
_________________
Intern
Joined: 08 Apr 2012
Posts: 2
GMAT 1: 610 Q47 V27
GMAT 2: 710 Q50 V35
Followers: 0

Kudos [?]: 1 [1] , given: 1

Re: The number of water lilies on a certain lake doubles every [#permalink]

### Show Tags

21 Nov 2012, 22:29
1
KUDOS
rainbooow wrote:
The number of water lilies on a certain lake doubles every two days. If there is exactly one water lily on the lake, it takes 60 days for the lake to be fully covered with water lilies. In how many days will the lake be fully covered with lilies, if initially there were two water lilies on it?

(A) 15

(B) 28

(C) 30

(D) 58

(E) 59

Starting from 1 Water Lilly it takes 60 days.
If there are already two present, it can be taken as the first day is over.
It will take 59 more days.
Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 6681
Location: Pune, India
Followers: 1832

Kudos [?]: 11151 [1] , given: 219

Re: The number of water lilies on a certain lake doubles every [#permalink]

### Show Tags

24 Feb 2016, 23:03
1
KUDOS
Expert's post
mvictor wrote:
since it doubles every 2 days..
on day 2 - we have 2
on day 4 - we have 4 or 2^2
on day 6 - we have 8, or 2^3
as we see, the power is nr of days/2
so in 60 days, we'll have 2^30 lilies.

so on day2 - we have 4
on day 4 - we have 8...
day 6 -> 2^4
day 8 -> 2^5
day 10 -> 2^6
day 12 -> 2^7

we can notice a pattern, that when # of days is divisible by 2, the power is +3 than for the last nr of days divisible by 6.
so: day 54 -> 4+3+3+3+3+3+3+3 -> so 28th power.
on day 56 - we'll have 2^29
on day 58 - we'll have 2^30 - the number we need.
so 58 days.

1 lily on Day 1 beginning,
get 2 by Day 2 end (or Day 3 beginning ),
get 4 by Day 4 end
get 8 by Day 6 end and so on
till you get pond full of lilies by Day 60 end.

If there are already 2 water lilies, you are just starting with Day 3 beginning and skipping the first 2 days. So to cover the pond you will need 2 days less i.e. 60 - 2 = 58 days.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for \$199

Veritas Prep Reviews

Intern
Joined: 10 Jun 2012
Posts: 14
Followers: 0

Kudos [?]: 32 [0], given: 66

Re: The number of water lilies on a certain lake doubles every [#permalink]

### Show Tags

21 Nov 2012, 22:43
seems too simple for "problem of the week"
Intern
Joined: 10 Jun 2012
Posts: 14
Followers: 0

Kudos [?]: 32 [0], given: 66

Re: The number of water lilies on a certain lake doubles every [#permalink]

### Show Tags

22 Nov 2012, 05:29
I also think so. Thanks for the link.
Manager
Joined: 26 Dec 2011
Posts: 117
Followers: 1

Kudos [?]: 27 [0], given: 17

Re: The number of water lilies on a certain lake doubles every [#permalink]

### Show Tags

30 Nov 2012, 07:57
I understand the logic, but am not able to solve it algebraically.

since the series is in the geometric progression with the common ration (r) = 2, initial condition can be rewritten as:

a(n) = 1.2^60-1 {a(n = a.r^n-1)} === which gives us total number of lillies in the pool ==>2^59.....no this is equated when the the pool starts with 2 lillies...==> 2^59 = 2.2^n-1 ===>n=59..

Where am I going wrong?
Math Expert
Joined: 02 Sep 2009
Posts: 33552
Followers: 5945

Kudos [?]: 73781 [0], given: 9903

Re: The number of water lilies on a certain lake doubles every [#permalink]

### Show Tags

30 Nov 2012, 09:53
Expert's post
pavanpuneet wrote:
I understand the logic, but am not able to solve it algebraically.

since the series is in the geometric progression with the common ration (r) = 2, initial condition can be rewritten as:

a(n) = 1.2^60-1 {a(n = a.r^n-1)} === which gives us total number of lillies in the pool ==>2^59.....no this is equated when the the pool starts with 2 lillies...==> 2^59 = 2.2^n-1 ===>n=59..

Where am I going wrong?

We are told that "the number of water lilies on a certain lake doubles every TWO days".

If there are two lilies, then in order to cover the lake they would need to double one time less than in case with 1 lily. Since lilies double every two days, then 60-2=58 days are needed.

_________________
Math Expert
Joined: 02 Sep 2009
Posts: 33552
Followers: 5945

Kudos [?]: 73781 [0], given: 9903

Re: The number of water lilies on a certain lake doubles every [#permalink]

### Show Tags

08 Sep 2013, 06:17
Expert's post
Bumping for review and further discussion.
_________________
Manager
Joined: 24 Apr 2013
Posts: 71
Location: United States
Followers: 0

Kudos [?]: 10 [0], given: 23

Re: The number of water lilies on a certain lake doubles every [#permalink]

### Show Tags

08 Sep 2013, 07:33
Bunuel,
would you please illustrate this question using the population formula rule used in the MGMAT.

Thank you
_________________

Struggling: make or break attempt

Math Expert
Joined: 02 Sep 2009
Posts: 33552
Followers: 5945

Kudos [?]: 73781 [0], given: 9903

Re: The number of water lilies on a certain lake doubles every [#permalink]

### Show Tags

08 Sep 2013, 07:43
Expert's post
SaraLotfy wrote:
Bunuel,
would you please illustrate this question using the population formula rule used in the MGMAT.

Thank you

Sorry not familiar with that one. The following threads might help:
a-certain-bacteria-colony-doubles-in-size-every-day-for-144013.html
it-takes-30-days-to-fill-a-laboratory-dish-with-bacteria-140269.html
_________________
Manager
Joined: 04 Apr 2013
Posts: 153
Followers: 1

Kudos [?]: 37 [0], given: 36

Re: The number of water lilies on a certain lake doubles every [#permalink]

### Show Tags

09 Mar 2014, 05:46
Bunuel or anyone,

Please confirm if my approach is correct.

Sum of lillies for 30 days using Geo Series:
a= 1+2+2^2+2^3..2^30 --(1)
2a = 2+2^2...2^31 -- (2)
Subtract 1 from 2
a=2^31 - 1 (Total lillies in the pond)

Now let x be number of times, both lillies expanded at once
lilly 1 -> a=1+2+2^2...2^x
sum of lilly 1 using Geo series described above = 2^x+1 - 1
lilly 2 -> a=1+2+2^2....2^x
sum of lilly 2 using Geo series described above = 2^x+1 - 1
--> sum of lilly 1 + sum of lilly 2 = 2^31 -1
so 2(2^x+1 -1) = 2^31 - 1
2^x+2 - 2 = 2^31 -1
approximately 2^x+2 = 2^31
x+2 = 31, x= 29 times ....so 58 days as lillies doubles evry 2 days
_________________

MGMAT1 - 540 ( Trying to improve )

Math Expert
Joined: 02 Sep 2009
Posts: 33552
Followers: 5945

Kudos [?]: 73781 [0], given: 9903

Re: The number of water lilies on a certain lake doubles every [#permalink]

### Show Tags

09 Mar 2014, 07:21
Expert's post
Bunuel or anyone,

Please confirm if my approach is correct.

Sum of lillies for 30 days using Geo Series:
a= 1+2+2^2+2^3..2^30 --(1)
2a = 2+2^2...2^31 -- (2)
Subtract 1 from 2
a=2^31 - 1 (Total lillies in the pond)

Now let x be number of times, both lillies expanded at once
lilly 1 -> a=1+2+2^2...2^x
sum of lilly 1 using Geo series described above = 2^x+1 - 1
lilly 2 -> a=1+2+2^2....2^x
sum of lilly 2 using Geo series described above = 2^x+1 - 1
--> sum of lilly 1 + sum of lilly 2 = 2^31 -1
so 2(2^x+1 -1) = 2^31 - 1
2^x+2 - 2 = 2^31 -1
approximately 2^x+2 = 2^31
x+2 = 31, x= 29 times ....so 58 days as lillies doubles evry 2 days

No, that's not correct. Neat algebraic manipulations though...

Notice that the total number of lilies is not 1+2+2^2+2^3..2^30, it's 2^30.

Initially = 1;
After 2 days = 2, not 1+2;
After 4 days = 2^2 = 4, not 1+2+4.
...
After 60 days = 2^30, not 1+2+2^2+2^3+...+2^30.

Similarly, if initially there are 2 lilies, then the total number would be 2*2^x.

So, we'd have that 2^30 = 2*2^x --> x = 29.

Similar questions to practice:
a-certain-bacteria-colony-doubles-in-size-every-day-for-144013.html
it-takes-30-days-to-fill-a-laboratory-dish-with-bacteria-140269.html
the-population-of-locusts-in-a-certain-swarm-doubles-every-90353.html
the-population-of-a-bacteria-culture-doubles-every-2-minutes-167378.html

Hope it helps.
_________________
Manager
Joined: 04 Apr 2013
Posts: 153
Followers: 1

Kudos [?]: 37 [0], given: 36

Re: The number of water lilies on a certain lake doubles every [#permalink]

### Show Tags

09 Mar 2014, 19:38
Bunuel wrote:
Bunuel or anyone,

Please confirm if my approach is correct.

Sum of lillies for 30 days using Geo Series:
a= 1+2+2^2+2^3..2^30 --(1)
2a = 2+2^2...2^31 -- (2)
Subtract 1 from 2
a=2^31 - 1 (Total lillies in the pond)

Now let x be number of times, both lillies expanded at once
lilly 1 -> a=1+2+2^2...2^x
sum of lilly 1 using Geo series described above = 2^x+1 - 1
lilly 2 -> a=1+2+2^2....2^x
sum of lilly 2 using Geo series described above = 2^x+1 - 1
--> sum of lilly 1 + sum of lilly 2 = 2^31 -1
so 2(2^x+1 -1) = 2^31 - 1
2^x+2 - 2 = 2^31 -1
approximately 2^x+2 = 2^31
x+2 = 31, x= 29 times ....so 58 days as lillies doubles evry 2 days

No, that's not correct. Neat algebraic manipulations though...

Notice that the total number of lilies is not 1+2+2^2+2^3..2^30, it's 2^30.

Initially = 1;
After 2 days = 2, not 1+2;
After 4 days = 2^2 = 4, not 1+2+4.
...
After 60 days = 2^30, not 1+2+2^2+2^3+...+2^30.

Similarly, if initially there are 2 lilies, then the total number would be 2*2^x.

So, we'd have that 2^30 = 2*2^x --> x = 29.

Similar questions to practice:
a-certain-bacteria-colony-doubles-in-size-every-day-for-144013.html
it-takes-30-days-to-fill-a-laboratory-dish-with-bacteria-140269.html
the-population-of-locusts-in-a-certain-swarm-doubles-every-90353.html
the-population-of-a-bacteria-culture-doubles-every-2-minutes-167378.html

Hope it helps.

Thank you Bunuel. My interpretation of question is incorrect.
_________________

MGMAT1 - 540 ( Trying to improve )

Intern
Joined: 18 Feb 2014
Posts: 4
Followers: 0

Kudos [?]: 0 [0], given: 5

Re: The number of water lilies on a certain lake doubles every [#permalink]

### Show Tags

10 Jun 2014, 13:36
That is pretty easy one.
Full = 60 days, knowing that the number of lilies doubles each 2 days we can deduce that the half of the lake was full at 58 days.
Taking initial information that we have 2 lilies at day 1 we can just simply multiply 2 lilies by 1/2 of the lake which means that the lake will be full at 58 days.
Manager
Joined: 17 Jul 2013
Posts: 110
Followers: 0

Kudos [?]: 3 [0], given: 67

Re: The number of water lilies on a certain lake doubles every [#permalink]

### Show Tags

21 Jun 2014, 05:22
I thought this way :
30 days will take to complete the pond with lillies count as 2^30 (since it takes 2 days to double hence will take 30 days of 60)
on first day - 2^0 =1 lilly
on day 2 - 2^1 = 2
on day 3 - 2^2 = 4 so on ...
now since the there are two lillies already it will take 2^30/ 2^1 = 2^29 ...this will take complete 2* 29 days i.e 58 days

I hope it is clear .....
Intern
Joined: 23 Apr 2014
Posts: 9
Followers: 0

Kudos [?]: 6 [0], given: 2

Re: The number of water lilies on a certain lake doubles every [#permalink]

### Show Tags

16 Sep 2014, 04:08
2
This post was
BOOKMARKED
I am going by this formula : y(t) = y(0) x K^t
where
y(t) = desired value after t period
y(0) = initial value
k = multiplier (or the factor by which the value increases every t period)
t = time period

Given - # of lilies doubles every two days
==> t= 2 days
k^t = k^2 = 2
==> k = sqrt(2)
Now,
it takes 60 days for a lake to be fully covered with water lilies starting from 1 lily
so, y(0) = 1
t = 60 days
y(t) i.e no. of lilies after 60 days
y(t) = 1 x sqrt(2)^60

now, we have the final count of lilies after 60 days if we start from 1 lily.
we can calculate the time period if we start from 2 lilies ( the # of lilies after 60 days will not change as the multiplier is constant)

1 x sqrt(2)^60 = 2 x sqrt(2)^t

Solving this will give t= 58 days.

I hope it helps.
Intern
Joined: 15 Jul 2012
Posts: 38
Followers: 0

Kudos [?]: 4 [0], given: 245

Re: The number of water lilies on a certain lake doubles every [#permalink]

### Show Tags

05 Oct 2014, 02:34
Bunuel wrote:

Notice that the total number of lilies is not 1+2+2^2+2^3..2^30, it's 2^30.

Initially = 1;
After 2 days = 2, not 1+2;
After 4 days = 2^2 = 4, not 1+2+4.
...
After 60 days = 2^30, not 1+2+2^2+2^3+...+2^30.

Similarly, if initially there are 2 lilies, then the total number would be 2*2^x.

So, we'd have that 2^30 = 2*2^x --> x = 29.

Hope it helps.

The number of water lilies on a certain lake doubles every two days. If there is exactly one water lily on the lake, it takes 60 days for the lake to be fully covered with water lilies. In how many days will the lake be fully covered with lilies, if initially there were two water lilies on it?

(A) 15
(B) 28
(C) 30
(D) 58
(E) 59

hey Bunuel,

i have a doubt in the first part of the problem it is given that if there is one lily it will take 60 days and number of water lillies double every 2 days.

so, it is in GP and the terms will be a, ar, ar^2, ar^3 etc. here it is 1,2,4,8....

we need to find the 30th term which will be ar^n-1 gives us ar^29 that leads to 1(2^29) but you got it as 2^30

what is wrong with what i did?
Math Expert
Joined: 02 Sep 2009
Posts: 33552
Followers: 5945

Kudos [?]: 73781 [0], given: 9903

Re: The number of water lilies on a certain lake doubles every [#permalink]

### Show Tags

05 Oct 2014, 02:47
Expert's post
saggii27 wrote:
Bunuel wrote:

Notice that the total number of lilies is not 1+2+2^2+2^3..2^30, it's 2^30.

Initially = 1;
After 2 days = 2, not 1+2;
After 4 days = 2^2 = 4, not 1+2+4.
...
After 60 days = 2^30, not 1+2+2^2+2^3+...+2^30.

Similarly, if initially there are 2 lilies, then the total number would be 2*2^x.

So, we'd have that 2^30 = 2*2^x --> x = 29.

Hope it helps.

The number of water lilies on a certain lake doubles every two days. If there is exactly one water lily on the lake, it takes 60 days for the lake to be fully covered with water lilies. In how many days will the lake be fully covered with lilies, if initially there were two water lilies on it?

(A) 15
(B) 28
(C) 30
(D) 58
(E) 59

hey Bunuel,

i have a doubt in the first part of the problem it is given that if there is one lily it will take 60 days and number of water lillies double every 2 days.

so, it is in GP and the terms will be a, ar, ar^2, ar^3 etc. here it is 1,2,4,8....

we need to find the 30th term which will be ar^n-1 gives us ar^29 that leads to 1(2^29) but you got it as 2^30

what is wrong with what i did?

If you take first term as 1, then you'd have 31 terms: 1st day plus 30 divisions.
_________________
GMAT Club Legend
Joined: 09 Sep 2013
Posts: 10228
Followers: 482

Kudos [?]: 124 [0], given: 0

Re: The number of water lilies on a certain lake doubles every [#permalink]

### Show Tags

31 Oct 2015, 13:18
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Re: The number of water lilies on a certain lake doubles every   [#permalink] 31 Oct 2015, 13:18

Go to page    1   2    Next  [ 21 posts ]

Similar topics Replies Last post
Similar
Topics:
In a Lake, there is a patch of lily pads. Every day, the patch doubles 2 25 Jun 2016, 17:59
2 The volume of water inside a swimming pool doubles every hour. If the 2 14 Jun 2016, 07:11
3 The population of Growthtown doubles every 50 years. If the number of 10 11 Jan 2015, 12:35
7 A certain population of bacteria doubles every 10 minutes. 5 05 Jan 2014, 13:05
27 The population of locusts in a certain swarm doubles every 14 12 Feb 2010, 23:33
Display posts from previous: Sort by