Find all School-related info fast with the new School-Specific MBA Forum

It is currently 27 Jun 2016, 02:39
GMAT Club Tests

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

The probability of shooting a target increases after a

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Senior Manager
Senior Manager
User avatar
Joined: 17 Dec 2012
Posts: 433
Location: India
Followers: 22

Kudos [?]: 352 [0], given: 14

The probability of shooting a target increases after a [#permalink]

Show Tags

New post 18 Mar 2013, 07:03
1
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  75% (hard)

Question Stats:

41% (02:20) correct 59% (01:15) wrong based on 114 sessions

HideShow timer Statistics

The probability of shooting a target increases after a certain skill is enhanced and is equal to the new probability of NOT shooting the target. Given this fact, which of the following must be false?

A. The new probability of shooting the target is greater than 0.5
B. The original probability of shooting the target is less than 0.5
C. The original probability of NOT shooting the target and the new probability of shooting the target are the same
D. The original probability of shooting the target and that of NOT shooting the target are the same.
E. The sum of the original and the new probabilities of shooting the target is ALWAYS equal to 1.
[Reveal] Spoiler: OA

_________________

Srinivasan Vaidyaraman
Sravna
http://www.sravnatestprep.com

Classroom Courses in Chennai

2 KUDOS received
Manager
Manager
User avatar
Joined: 24 Jan 2013
Posts: 79
Followers: 5

Kudos [?]: 119 [2] , given: 6

Re: The probability of shooting a target increases after a [#permalink]

Show Tags

New post 20 Mar 2013, 03:12
2
This post received
KUDOS
Quote:
The probability of shooting a target increases after a certain skill is enhanced and is equal to the new probability of NOT shooting the target. Given this fact, which of the following must be false?


I think this is a 700 problem.

If I understood well the question, we have:

  • initial probability of shooting target: \(P(success\;initial)\)
  • initial probability of not shooting the target: \(P(not\;success\;initial)\)
  • new probability of shooting target: \(P(success\;final)\)
  • new probability of not shooting the target: \(P(not\;success\;final)\)

Conditions given by problem:

(1) \(P(success\;initial)=1-P(not\;success\;initial)\)

(2) \(P(success\;final)=1-P(not\;success\;final)\)

(3) \(P(success\;initial)<P(success\;final)\)

(4) \(P(success\;initial)=P(not\;success\;final)\)

Therefore:

\(P(success\;final)=1-P(success\;initial)\)

then

\(P(success\;initial)<1-P(success\;initial)\) ---> \(P(success\;initial)<0.5\)

Conclusions:

(5) \(P(success\;initial)<0.5\)

(6) \(P(success\;final)>0.5\)

(7) \(P(not\;success\;final)<0.5\)

(8) \(P(not\;success\;initial)>0.5\)

(9) \(P(success\;final)=1-P(not\;success\;final)\) ---> \(P(success\;final)=1-P(success\;initial)\) ---> \(P(success\;final)+P(success\;initial)=1\)

Analysis of different options:

A. The new probability of shooting the target is greater than 0.5: TRUE, look at (6)
B. The original probability of shooting the target is less than 0.5: TRUE, look at (5)
C. The original probability of NOT shooting the target and the new probability of shooting the target are the same: TRUE, look at (4)
D. The original probability of shooting the target and that of NOT shooting the target are the same: FALSE
E. The sum of the original and the new probabilities of shooting the target is ALWAYS equal to 1: : TRUE, look at (9)
Manager
Manager
User avatar
Joined: 24 Jan 2013
Posts: 79
Followers: 5

Kudos [?]: 119 [0], given: 6

Re: The probability of shooting a target increases after a [#permalink]

Show Tags

New post 20 Mar 2013, 08:45
In fact, the key formula here to solve the whole problem is:

\(P(A)=1-P(not\;A)\)

Then differentiate between the initial situation and the new (or final) situation:

Initial: \(P(A)=1-P(not\;A)\)

New: \(P(Z)=1-P(not\;Z)\)

And link the formulas with the conditions given by the problem.
Senior Manager
Senior Manager
User avatar
Joined: 17 Dec 2012
Posts: 433
Location: India
Followers: 22

Kudos [?]: 352 [0], given: 14

Re: The probability of shooting a target increases after a [#permalink]

Show Tags

New post 24 Mar 2013, 19:07
SravnaTestPrep wrote:
The probability of shooting a target increases after a certain skill is enhanced and is equal to the new probability of NOT shooting the target. Given this fact, which of the following must be false?

A. The new probability of shooting the target is greater than 0.5
B. The original probability of shooting the target is less than 0.5
C. The original probability of NOT shooting the target and the new probability of shooting the target are the same
D. The original probability of shooting the target and that of NOT shooting the target are the same.
E. The sum of the original and the new probabilities of shooting the target is ALWAYS equal to 1.



1. Let p(i), q(i), be the initial probability of shooting and missing the target respectively and let p(n) and q(n) be the new probability of shooting and missing the target respectively.

Given:

1. p(i) + q(i) =1
2. P(n) + q(n) =1
3. p(n) > p(i)
4. p(i) = q(n)

Deductions:

5. q(n) + q(i) =1 ( from (1) and (4) )
6. p(n) + p(i) =1 ( from (2) and (4) ) - ( Choice E always true)

7. From ( 3) and (6), p(i) < 0.5 and p(n) > 0.5 - ( Choice A and Choice B always true)

8. From (1) and (6), q(i) = p(n) - ( Choice C always true)

9. From (3) and (8), q(i) > p(i) - ( choice D always false)

Therefore the answer is Choice D.
_________________

Srinivasan Vaidyaraman
Sravna
http://www.sravnatestprep.com

Classroom Courses in Chennai

Current Student
User avatar
Joined: 06 Sep 2013
Posts: 2035
Concentration: Finance
GMAT 1: 770 Q0 V
Followers: 46

Kudos [?]: 473 [0], given: 355

GMAT ToolKit User
Re: The probability of shooting a target increases after a [#permalink]

Show Tags

New post 24 Mar 2014, 09:56
SravnaTestPrep wrote:
The probability of shooting a target increases after a certain skill is enhanced and is equal to the new probability of NOT shooting the target. Given this fact, which of the following must be false?

A. The new probability of shooting the target is greater than 0.5
B. The original probability of shooting the target is less than 0.5
C. The original probability of NOT shooting the target and the new probability of shooting the target are the same
D. The original probability of shooting the target and that of NOT shooting the target are the same.
E. The sum of the original and the new probabilities of shooting the target is ALWAYS equal to 1.


Sravna, what's the source of this question?

I find a little bit out of scope of GMAT

Thanks
Cheers
J
Manager
Manager
User avatar
Joined: 08 Jun 2015
Posts: 126
Location: India
Followers: 1

Kudos [?]: 3 [0], given: 64

CAT Tests
Re: The probability of shooting a target increases after a [#permalink]

Show Tags

New post 20 May 2016, 08:05
Can you specify the source of this question ? Further, is there an easier way to solve the question ? Listing out the nine cases is time consuming !
_________________

" The few , the fearless "

Manager
Manager
User avatar
Joined: 27 Apr 2016
Posts: 93
Location: Brazil
GMAT 1: 610 Q37 V36
GPA: 2.7
WE: Information Technology (Education)
Followers: 1

Kudos [?]: 10 [0], given: 12

Re: The probability of shooting a target increases after a [#permalink]

Show Tags

New post 20 May 2016, 14:28
I always get these questions right, but I take a lot of time!!

I took 3:20 to answer this one. How can I improve this specific aspect??
_________________

The errant cosmos works against me!

Re: The probability of shooting a target increases after a   [#permalink] 20 May 2016, 14:28
    Similar topics Author Replies Last post
Similar
Topics:
11 Experts publish their posts in the topic The probability of picking 2 red balls one after another without repla chetan2u 4 29 Jan 2016, 02:05
11 Experts publish their posts in the topic The probability that a target will be shot two out of two SravnaTestPrep 12 17 Mar 2013, 18:53
72 Experts publish their posts in the topic If the probability that Stock A will increase in value Baten80 21 17 Jan 2012, 12:49
1 Experts publish their posts in the topic Each day after an item is lost the probability of finding th gmatpapa 23 24 Jan 2011, 04:09
probablity bnagdev282 4 29 Mar 2010, 16:26
Display posts from previous: Sort by

The probability of shooting a target increases after a

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.