The remainder when 1+3+3^2+3^3+..........+3^200 is divided 1 : GMAT Problem Solving (PS)
Check GMAT Club App Tracker for the Latest School Decision Releases http://gmatclub.com/AppTrack

It is currently 09 Dec 2016, 16:00
GMAT Club Tests

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

The remainder when 1+3+3^2+3^3+..........+3^200 is divided 1

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

2 KUDOS received
Manager
Manager
avatar
Joined: 19 Nov 2007
Posts: 225
Followers: 1

Kudos [?]: 248 [2] , given: 1

The remainder when 1+3+3^2+3^3+..........+3^200 is divided 1 [#permalink]

Show Tags

New post 05 Nov 2009, 10:52
2
This post received
KUDOS
10
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  65% (hard)

Question Stats:

63% (02:52) correct 37% (02:14) wrong based on 167 sessions

HideShow timer Statistics

The remainder when 1+3+3^2+3^3+..........+3^200 is divided 13.

A. 12
B. 7
C. 0
D. 5
E. 3
[Reveal] Spoiler: OA
6 KUDOS received
Manager
Manager
avatar
Joined: 11 Sep 2009
Posts: 129
Followers: 5

Kudos [?]: 332 [6] , given: 6

Re: Remainder Problem [#permalink]

Show Tags

New post 05 Nov 2009, 12:21
6
This post received
KUDOS
I'm not sure if there is a simpler way to approach this problem, but this is how I solved it. It relies on taking the remainder of each term individually, and from that, determining the remainder of the sum of the terms.

Remainder of 1/13 = 1
Remainder of 3/13 = 3
Remainder of (3^2)/13 = (Remainder of 3)*(Remainder of 3) / 13 = Remainder of 3*3/13 = 9
Remainder of (3^3)/13 = (Remainder of 3^2)*(Remainder of 3) / 13 = Remainder of 9*3/13 = 1
Remainder of (3^4)/13 = (Remainder of 3^3)*(Remainder of 3) / 13 = Remainder of 1*3/13 = 3

And so on....

Essentially, the question can be reduced to:

What is the remainder of: 1 + 3 + 9 + 1 + 3 + 9 + 1... (with 200 + 1 terms) when divided by 13

= (1+3+9) * (201/3) mod 13 (i.e. remainder)
= 13 * (some integer) mod 13
= 0

Therefore, the answer should be 0.
Senior Manager
Senior Manager
User avatar
Affiliations: PMP
Joined: 13 Oct 2009
Posts: 312
Followers: 4

Kudos [?]: 158 [0], given: 37

Re: Remainder Problem [#permalink]

Show Tags

New post 05 Nov 2009, 12:54
AKProdigy87 wrote:
I'm not sure if there is a simpler way to approach this problem, but this is how I solved it. It relies on taking the remainder of each term individually, and from that, determining the remainder of the sum of the terms.

Remainder of 1/13 = 1
Remainder of 3/13 = 3
Remainder of (3^2)/13 = (Remainder of 3)*(Remainder of 3) / 13 = Remainder of 3*3/13 = 9
Remainder of (3^3)/13 = (Remainder of 3^2)*(Remainder of 3) / 13 = Remainder of 9*3/13 = 1
Remainder of (3^4)/13 = (Remainder of 3^3)*(Remainder of 3) / 13 = Remainder of 1*3/13 = 3

And so on....

Essentially, the question can be reduced to:

What is the remainder of: 1 + 3 + 9 + 1 + 3 + 9 + 1... (with 200 + 1 terms) when divided by 13

= (1+3+9) * (201/3) mod 13 (i.e. remainder)
= 13 * (some integer) mod 13
= 0

Therefore, the answer should be 0.


Good way to do it +1 Kudos
_________________

Thanks, Sri
-------------------------------
keep uppp...ing the tempo...

Press +1 Kudos, if you think my post gave u a tiny tip

Manager
Manager
avatar
Joined: 19 Nov 2007
Posts: 225
Followers: 1

Kudos [?]: 248 [0], given: 1

Re: Remainder Problem [#permalink]

Show Tags

New post 05 Nov 2009, 17:29
Good work AKProdigy87

The answer is indeed 0
1 KUDOS received
Intern
Intern
avatar
Affiliations: CA - India
Joined: 27 Oct 2009
Posts: 45
Location: India
Schools: ISB - Hyderabad, NSU - Singapore
Followers: 20

Kudos [?]: 684 [1] , given: 5

Re: Remainder Problem [#permalink]

Show Tags

New post 05 Nov 2009, 23:40
1
This post received
KUDOS
i tried the problem with similar method:

3^0/13= remainder 1.
3^0/13+3^1/13= remainder 4.
3^0/13+3^1/13+3^2/13= remainder 0.
3^3/13= remainder 1.
3^3/13+3^4/13= remainder 4.
3^3/13+3^4/13+3^5/13= remainder 0.
.
.
.
.
Hence, sum of last 3 digits in the given equation must also give remainder 0. Some times, pattern of similar answers saves time, i guess.. works for me!!
1 KUDOS received
Intern
Intern
avatar
Joined: 28 Apr 2009
Posts: 48
Followers: 0

Kudos [?]: 7 [1] , given: 2

Re: Remainder Problem [#permalink]

Show Tags

New post 09 Nov 2009, 02:31
1
This post received
KUDOS
worked it out like this..

1+3+3^2 = 14 => divisible by 13

3^3+3^4+3^5 = 3^2(1+3+3^2) = 9x13 => divisible by 13..

starting from 1 the sum of every three terms is a multiple of 13..

so upto the power of 200, there are 201 terms.. which is a multiple of 3.. so the sum must me a multiple of 13..

Remainder would be therefore 0..
Manager
Manager
User avatar
Joined: 23 Jun 2009
Posts: 156
Followers: 1

Kudos [?]: 11 [0], given: 9

Re: Remainder Problem [#permalink]

Show Tags

New post 11 Nov 2009, 20:18
mbaquestionmark wrote:
worked it out like this..

1+3+3^2 = 14 => divisible by 13

3^3+3^4+3^5 = 3^2(1+3+3^2) = 9x13 => divisible by 13..

starting from 1 the sum of every three terms is a multiple of 13..

so upto the power of 200, there are 201 terms.. which is a multiple of 3.. so the sum must me a multiple of 13..

Remainder would be therefore 0..


I worked it out the same way.. :-D but was a bit confused between 200 and 201 terms
3 KUDOS received
Intern
Intern
avatar
Joined: 28 Apr 2009
Posts: 48
Followers: 0

Kudos [?]: 7 [3] , given: 2

Re: Remainder Problem [#permalink]

Show Tags

New post 11 Nov 2009, 20:50
3
This post received
KUDOS
It is always easy if u remember that the co-efficient only term can be written as (co-efficient) x (the variable raised to 0).

so it is 3^0 to 3^200.. i.e. 0 to 200 so 201 terms.

cheers.

Casinoking wrote:
mbaquestionmark wrote:
worked it out like this..

1+3+3^2 = 14 => divisible by 13

3^3+3^4+3^5 = 3^2(1+3+3^2) = 9x13 => divisible by 13..

starting from 1 the sum of every three terms is a multiple of 13..

so upto the power of 200, there are 201 terms.. which is a multiple of 3.. so the sum must me a multiple of 13..

Remainder would be therefore 0..


I worked it out the same way.. :-D but was a bit confused between 200 and 201 terms
Manager
Manager
User avatar
Joined: 19 Feb 2009
Posts: 58
Schools: INSEAD,Nanyang Business school, CBS,
Followers: 2

Kudos [?]: 88 [0], given: 8

Re: Remainder Problem [#permalink]

Show Tags

New post 12 Nov 2009, 04:59
the answer is 0 ....
_________________

Working without expecting fruit helps in mastering the art of doing fault-free action !

1 KUDOS received
Manager
Manager
User avatar
Joined: 29 Oct 2009
Posts: 211
GMAT 1: 750 Q50 V42
Followers: 101

Kudos [?]: 1248 [1] , given: 18

Re: Remainder Problem [#permalink]

Show Tags

New post 12 Nov 2009, 05:42
1
This post received
KUDOS
Hey guys,

This is how I worked it out:

If \(3^x\) is a number such that x is evenly divisible by 3 (ie. it leaves remainder of 0), then the sum of numbers from \(3^0\) to \(3^{x-1}\) will always be evenly divisible by 13.

Now, we know that 201 is divisible by 3. Therefore, 200 = 201 - 1 (which satisfies our condition)

Hence sum of the numbers from \(3^0\) to \(3^{200}\) will be divisible by 13.

Thus answer is 0.
_________________

Click below to check out some great tips and tricks to help you deal with problems on Remainders!
http://gmatclub.com/forum/compilation-of-tips-and-tricks-to-deal-with-remainders-86714.html#p651942

Word Problems Made Easy!
1) Translating the English to Math : http://gmatclub.com/forum/word-problems-made-easy-87346.html
2) 'Work' Problems Made Easy : http://gmatclub.com/forum/work-word-problems-made-easy-87357.html
3) 'Distance/Speed/Time' Word Problems Made Easy : http://gmatclub.com/forum/distance-speed-time-word-problems-made-easy-87481.html

Manager
Manager
avatar
Joined: 11 Jul 2009
Posts: 57
Followers: 1

Kudos [?]: 27 [0], given: 19

Re: Remainder Problem [#permalink]

Show Tags

New post 12 Nov 2009, 19:10
mbaquestionmark wrote:
It is always easy if u remember that the co-efficient only term can be written as (co-efficient) x (the variable raised to 0).

so it is 3^0 to 3^200.. i.e. 0 to 200 so 201 terms.

cheers.

Casinoking wrote:
mbaquestionmark wrote:
worked it out like this..

1+3+3^2 = 14 => divisible by 13

3^3+3^4+3^5 = 3^2(1+3+3^2) = 9x13 => divisible by 13..

starting from 1 the sum of every three terms is a multiple of 13..

so upto the power of 200, there are 201 terms.. which is a multiple of 3.. so the sum must me a multiple of 13..

Remainder would be therefore 0..


I worked it out the same way.. :-D but was a bit confused between 200 and 201 terms



Useful tip. I too used to get confused. Kudos. :)
SVP
SVP
avatar
Joined: 16 Nov 2010
Posts: 1672
Location: United States (IN)
Concentration: Strategy, Technology
Followers: 33

Kudos [?]: 507 [0], given: 36

Premium Member Reviews Badge
Re: Remainder Problem [#permalink]

Show Tags

New post 13 May 2011, 18:17
There are 201 numbers in series


(1/13 + 3/13 + 9/13) + (27/13 + 81/13 + 243/13)

(1+ 3 + 9) + (1 + 3 + 9) - Pattern of remainers

= 13 + 13 + ..

On dividing by 13 again

0 + 0 + 0

Answer - C
_________________

Formula of Life -> Achievement/Potential = k * Happiness (where k is a constant)

GMAT Club Premium Membership - big benefits and savings

2 KUDOS received
Current Student
avatar
Joined: 03 Aug 2012
Posts: 916
Concentration: General Management, General Management
GMAT 1: 630 Q47 V29
GMAT 2: 680 Q50 V32
GPA: 3.7
WE: Information Technology (Investment Banking)
Followers: 23

Kudos [?]: 676 [2] , given: 322

Premium Member
Re: Remainder Problem [#permalink]

Show Tags

New post 09 Aug 2013, 04:57
2
This post received
KUDOS
1
This post was
BOOKMARKED
1+3+3^2+3^3+..................+3^200

Is a Geometric progression having common ratio as '3' and number of terms as '201'.

Since Sum to n terms in GP = a(r^n-1)/(r-1)

where a=First term and r =common ration

Hence,

1*(3^201 -1 )/(3-1)

Rem of (3^201-1)/2 divided by 13

3^201 -1 /26

WKT, 3^3 = 27 = 26+1

{(26+1)^67 - 1}/26

{1-1}/26

=>0
_________________

Rgds,
TGC!
_____________________________________________________________________
I Assisted You => KUDOS Please
_____________________________________________________________________________

Senior Manager
Senior Manager
avatar
Joined: 10 Jul 2013
Posts: 335
Followers: 3

Kudos [?]: 306 [0], given: 102

Re: Remainder Problem [#permalink]

Show Tags

New post 10 Aug 2013, 13:39
jade3 wrote:
The remainder when 1+3+3^2+3^3+..........+3^200 is divided 13.

A.12
B.7
C.0
D.5
E.3

1+3+3^2+3^3+..........+3^(201-1) = (3^201 - 1)/(3-1) = (3^201 - 1) / 2
Now by 13 = (3^201 - 1) / 26 = (3^3)^67 - 1 / 26 = (26+1)^67 - 1 / 26 = (26)^67/26....... (1^67/26 - 1/26)
= An integer quotient and from the last part 0 . so remainder = 0
_________________

Asif vai.....

GMAT Club Legend
GMAT Club Legend
User avatar
Joined: 09 Sep 2013
Posts: 12904
Followers: 562

Kudos [?]: 158 [0], given: 0

Premium Member
Re: The remainder when 1+3+3^2+3^3+..........+3^200 is divided 1 [#permalink]

Show Tags

New post 05 Oct 2014, 10:21
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

GMAT Club Legend
GMAT Club Legend
User avatar
Joined: 09 Sep 2013
Posts: 12904
Followers: 562

Kudos [?]: 158 [0], given: 0

Premium Member
Re: The remainder when 1+3+3^2+3^3+..........+3^200 is divided 1 [#permalink]

Show Tags

New post 13 Feb 2016, 05:54
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Re: The remainder when 1+3+3^2+3^3+..........+3^200 is divided 1   [#permalink] 13 Feb 2016, 05:54
    Similar topics Author Replies Last post
Similar
Topics:
9 Experts publish their posts in the topic When x is divided by 2, remainder is 1 and y is divided by 8, remainde fattty 7 18 Jan 2016, 21:32
15 Experts publish their posts in the topic When positive integer n is divided by 3, the remainder is 1. When n is Bunuel 11 20 Oct 2015, 11:20
5 Experts publish their posts in the topic When N is divided by 10 the remainder is 1 and when N is div salsal 3 06 Sep 2013, 11:44
13 Experts publish their posts in the topic When positive integer n is divided by 5, the remainder is 1. When n is mniyer 8 09 Apr 2011, 15:08
96 Experts publish their posts in the topic When positive integer n is divided by 5, the remainder is 1 Pedros 24 03 Jan 2010, 15:00
Display posts from previous: Sort by

The remainder when 1+3+3^2+3^3+..........+3^200 is divided 1

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.