Find all School-related info fast with the new School-Specific MBA Forum

It is currently 28 Aug 2014, 03:11

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

The sum of the integers in list S is the same as the sum of

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
4 KUDOS received
Manager
Manager
avatar
Joined: 03 Oct 2009
Posts: 64
Followers: 0

Kudos [?]: 28 [4] , given: 8

The sum of the integers in list S is the same as the sum of [#permalink] New post 18 Feb 2012, 08:09
4
This post received
KUDOS
18
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  75% (hard)

Question Stats:

21% (02:09) correct 79% (01:05) wrong based on 497 sessions
The sum of the integers in list S is the same as the sum of the integers in list T. Does S contain more integers than T?

(1) The average (arithmetic mean) of the integers in S is less than the average of the integers in T.
(2) The median of the integers in S is greater than the median of the integers in T.
[Reveal] Spoiler: OA
2 KUDOS received
Intern
Intern
avatar
Joined: 16 Jan 2012
Posts: 32
Followers: 0

Kudos [?]: 5 [2] , given: 0

Re: The sum of the integers in list S is the same as the sum of [#permalink] New post 18 Feb 2012, 09:53
2
This post received
KUDOS
A is clearly sufficient.

Statement two is insufficient-e.g consider the following sets:

S- 2,3,5
T- 1,2,3,4
S has fewer numbers than T

Now,let S-1,3,4,5
T- 1,3,9

S has more numbers
In each case median of S is greater
Expert Post
10 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 22142
Followers: 3407

Kudos [?]: 24904 [10] , given: 2697

Re: The sum of the integers in list S is the same as the sum of [#permalink] New post 18 Feb 2012, 10:24
10
This post received
KUDOS
Expert's post
2
This post was
BOOKMARKED
The sum of the integers in list S is the same as the sum of the integers in list T. Does S contain more integers than T?

Given: sum(S)=sum(T). Question: is t<s, where s and t are # of integers in lists S and T respectively.

(1) The average (arithmetic mean) of the integers in S is less than the average of the integers in T --> \frac{sum}{s}<\frac{sum}{t} --> cross multiply: sum*t<sum*s. Now, if sum<0 then t>s (when reducing by negative flip the sign) but if sum>0 then t<s. not sufficient.

(2) The median of the integers in S is greater than the median of the integers in T. If S={1, 1} and T={0, 0, 2} then the median of S (1) is greater than the median of T (0) and S contains less elements than T but if S={-1, -1, -1} and T={-3, 0} then the median of S (-1) is greater than the median of T (-1.5) and S contains more elements than T. Not sufficient.

(1)+(2):
If S={-1, 2, 2} and T={1, 2} then the sum is equal (3), the average of S (1) is less than the average of T (1.5), the median of S (2) is greater than the median of T (1.5) and S contains more elements than T.

If S={-2, -1} and T={-2, -2, 1} then the sum is equal (-3), the average of S (-1.5) is less than the average of T (-1), the median of S (-1.5) is greater than the median of T (-2) and S contains less elements than T.

Not sufficient.

Answer: E.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 16 Jan 2012
Posts: 32
Followers: 0

Kudos [?]: 5 [0], given: 0

Re: The sum of the integers in list S is the same as the sum of [#permalink] New post 18 Feb 2012, 10:26
clearly, as explained by bunel..ans is E...

I did not consider negative sum in A
Manager
Manager
avatar
Joined: 19 Apr 2010
Posts: 216
Schools: ISB, HEC, Said
Followers: 4

Kudos [?]: 17 [0], given: 28

GMAT Tests User
Re: The sum of the integers in list S is the same as the sum of [#permalink] New post 20 Feb 2012, 23:30
Is the approach to solve such questions is come up with sets which satisfy and dont satisfy the conditions.

Is there any other way we can solve this type of questions.
Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 22142
Followers: 3407

Kudos [?]: 24904 [1] , given: 2697

Re: The sum of the integers in list S is the same as the sum of [#permalink] New post 21 Feb 2012, 04:23
1
This post received
KUDOS
Expert's post
prashantbacchewar wrote:
Is the approach to solve such questions is come up with sets which satisfy and dont satisfy the conditions.

Is there any other way we can solve this type of questions.


Generally on DS questions when using plug-in method, goal is to prove that the statement is not sufficient. So we should try to get a YES answer with one chosen number(s) and a NO with another.

Of course algebra/math or conceptual/pure logic approach is also applicable to prove that the statement is not sufficient. It really depends on the particular problem and personal preferences to choose which approach to take.

Hope it helps.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

1 KUDOS received
Manager
Manager
User avatar
Joined: 06 Oct 2009
Posts: 98
Location: Mexico
Concentration: Entrepreneurship, Finance
GMAT 1: 610 Q42 V34
GPA: 3.85
WE: Sales (Commercial Banking)
Followers: 1

Kudos [?]: 33 [1] , given: 3

Re: List S and T [#permalink] New post 17 Sep 2012, 20:35
1
This post received
KUDOS
Bunuel wrote:
enigma123 wrote:
The sum of the integers in list S is same as the sum of the integers in list T. Does S contains more integers than T?

1. The average (arithmetic mean) of the integers in S is less than the average of the integers in T.

2. The median of the integers in S is greater than the median of the integers in T.

Any idea how to get A?


Merging similar topics. Please ask if anything remains unlcear.


Dear Bunuel

I ran into this question in a Gmat Prep exam and the OA is A. It works with positive integers, but it doesn't with negatives. My pick was C, but after a closer look I ended up with E as you.

My deduction is that the mean is a function of the number of items in each set. As the number of items increases, the mean decreases. In statament 1 we are told that the mean of S is smaller than that of T, but that only work for positives.

Have you ever ran into a GMAT Prep OA that is disputable?

I considered the following

S = 1, 2, 3, 4, 5
Sum is 15
Mean is 3

T = 7, 8
Sum is 15
Mean is 7.5

Therefore if mean of S < mean of T, then S must have more items than T, only if the Sum of the sets is possitive.

Considering two sets that Sum a negative number

S = -4, -3, -2, -1
Sum is -10
Mean -2.5

T = -9, -1
Sum is - 10
Mean -5

Different answer for positives and negatives, therefore not sufficient

We can not take a set that Sums 0, as the medians would be the same

2) The median of integers in S is greater than the median in integers in T.

For positives

S = 1, 2, 3, 4, 5
Sum is 15
Median is 3

T = 7, 8
Sum is 15
Median is 7.5

Answer NO

or

S= 1, 1, 1, 2, 2, 3
Sum 10
Median 1.5

T = 2, 2, 2, 4
Sum 10
Median 2

Answer No

Seems sufficient but considering two sets that Sum a negative number

S = -4, -3, -2, -1
Sum is -10
Mean -2.5
Median -2.5

T = -9, -1
Sum is - 10
Mean -5
Median -5

Answer Yes

Therefore Insufficient

I chosed C as I believed the two statements force the Sum of both sets to be positve, but I guess it was a poorly analyzed deduction.

I have never runed into a question where the OA was open to dispute, have you?

Thanks in advance
Attachments

Crazy sets S and T.JPG
Crazy sets S and T.JPG [ 76.13 KiB | Viewed 8337 times ]

Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 22142
Followers: 3407

Kudos [?]: 24904 [1] , given: 2697

Re: List S and T [#permalink] New post 18 Sep 2012, 00:08
1
This post received
KUDOS
Expert's post
Bull78 wrote:
Dear Bunuel

I ran into this question in a Gmat Prep exam and the OA is A. It works with positive integers, but it doesn't with negatives. My pick was C, but after a closer look I ended up with E as you.

I chosed C as I believed the two statements force the Sum of both sets to be positve, but I guess it was a poorly analyzed deduction.

I have never runed into a question where the OA was open to dispute, have you?

Thanks in advance


Yes, there are several questions in GMAT Prep with incorrect answers. This question is one of them. A is not correct, answer should be E.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
User avatar
Joined: 29 Sep 2012
Posts: 22
Location: United States
Concentration: Finance, Technology
WE: Corporate Finance (Investment Banking)
Followers: 0

Kudos [?]: 7 [0], given: 67

Re: List S and T [#permalink] New post 03 Nov 2012, 07:49
Bunuel wrote:
Bull78 wrote:
Dear Bunuel

I ran into this question in a Gmat Prep exam and the OA is A. It works with positive integers, but it doesn't with negatives. My pick was C, but after a closer look I ended up with E as you.

I chosed C as I believed the two statements force the Sum of both sets to be positve, but I guess it was a poorly analyzed deduction.

I have never runed into a question where the OA was open to dispute, have you?

Thanks in advance



Yes, there are several questions in GMAT Prep with incorrect answers. This question is one of them. A is not correct, answer should be E.


Bunuel,

I guess A sufficiently works.
Because, after reviewing your answer, I tried doing the question again with both positive and negative integers

Please see the explanation below and suggest if i went wrong anywhere.

Data Sufficiency:

1. Arithmetic mean of list S is less than Arithmetic mean of list T


Basic formula used -->
Sum = mean * Number of integers in the set

Given condition in the question:
Sum of the integers in the list S = Sum of the integers in the list T




Integers can be both positive and negative.

Let the List S = {3,-3,10,2,13}


Sum = (3-3+10+2+13) = 25
Number of integers = 5
Mean = 5 (Substitute in the formula)

Then

List T would be
Sum = 25 (Condition given in the question)
Number of integers = ?
Mean of List T Should be more than mean of List S
assume mean = 6
then number of integers in the List T = (25/6) = 4.166

Of course, Number of integers in a List is a number we can still conclude that List T will always be less in the
number of integers with Same sum and With more mean.
_________________

Learn the Values. Knowledge comes by itself.

Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 22142
Followers: 3407

Kudos [?]: 24904 [1] , given: 2697

Re: List S and T [#permalink] New post 03 Nov 2012, 08:49
1
This post received
KUDOS
Expert's post
srikanthsharma wrote:
Bunuel wrote:
Bull78 wrote:
Dear Bunuel

I ran into this question in a Gmat Prep exam and the OA is A. It works with positive integers, but it doesn't with negatives. My pick was C, but after a closer look I ended up with E as you.

I chosed C as I believed the two statements force the Sum of both sets to be positve, but I guess it was a poorly analyzed deduction.

I have never runed into a question where the OA was open to dispute, have you?

Thanks in advance



Yes, there are several questions in GMAT Prep with incorrect answers. This question is one of them. A is not correct, answer should be E.


Bunuel,

I guess A sufficiently works.
Because, after reviewing your answer, I tried doing the question again with both positive and negative integers

Please see the explanation below and suggest if i went wrong anywhere.

Data Sufficiency:

1. Arithmetic mean of list S is less than Arithmetic mean of list T


Basic formula used -->
Sum = mean * Number of integers in the set

Given condition in the question:
Sum of the integers in the list S = Sum of the integers in the list T




Integers can be both positive and negative.

Let the List S = {3,-3,10,2,13}


Sum = (3-3+10+2+13) = 25
Number of integers = 5
Mean = 5 (Substitute in the formula)

Then

List T would be
Sum = 25 (Condition given in the question)
Number of integers = ?
Mean of List T Should be more than mean of List S
assume mean = 6
then number of integers in the List T = (25/6) = 4.166

Of course, Number of integers in a List is a number we can still conclude that List T will always be less in the
number of integers with Same sum and With more mean.


Again, answer to this question is E, not A. There are two examples in my post satisfying both statements and giving different answers.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
User avatar
Joined: 29 Sep 2012
Posts: 22
Location: United States
Concentration: Finance, Technology
WE: Corporate Finance (Investment Banking)
Followers: 0

Kudos [?]: 7 [0], given: 67

Re: List S and T [#permalink] New post 03 Nov 2012, 09:40
Thank you Bunuel.
You are a good teacher.
Attention to detail is what i have learnt from your explanations.
_________________

Learn the Values. Knowledge comes by itself.

Intern
Intern
avatar
Joined: 05 May 2013
Posts: 11
Followers: 0

Kudos [?]: 2 [0], given: 6

GMAT ToolKit User
Re: sum of integers in list S [#permalink] New post 07 May 2013, 07:44
S1 sufficient. Since sum S = sum T, as mean for S is less than mean for T, sum/s < sum/t => t<s where s and t are respective number of integers in S and T.

S2 insufficient.

Answer is A.

EDIT: those numbers below zero complicate things.

Last edited by AbuRashid on 07 May 2013, 09:58, edited 1 time in total.
1 KUDOS received
Manager
Manager
User avatar
Status: Pushing Hard
Affiliations: GNGO2, SSCRB
Joined: 30 Sep 2012
Posts: 92
Location: India
Concentration: Finance, Entrepreneurship
GPA: 3.33
WE: Analyst (Health Care)
Followers: 1

Kudos [?]: 62 [1] , given: 11

Reviews Badge
Re: sum of integers in list S [#permalink] New post 07 May 2013, 07:55
1
This post received
KUDOS
rochak22 wrote:
. The sum of the integers in list S is the same as the sum of the integers in list T. Does S contain more integers
than T?
(1) The average (arithmetic mean) of the integers in S is less than the average of the integers in T.
(2) The median of the integers in S is greater than the median of the integers in T.



Okay the Question asks if the integers in set S is more than the integers in set T ??

Statement1 :: The average (arithmetic mean) of the integers in S is less than the average of the integers in T.

Now, use smart number plugin ..... lets say if S = 2, 2, 2 and T = 3, 3, then the sums for both is 6, & the average of S is less than T and S has more integers than T.
similarly, if S = -3, -3 and T = -2, -2, -2, then the sums for both is -6, the average of S is less than T and S has fewer integers than T. Therefore, Insufficient


Statement 2 :: If T = 2, 2, 2 and S = 3, 3, then the sums for both is 6 & the median of S is greater than median of T and S has fewer integers than T.
& If T = -3, -3 and S = -2, -2, -2, then the sums for both -6 & the median of S is greater than median of T and S has more integers than T. Therefore, Insufficient.

1+2 .......... Lets say If S = -7, 9, 10 and T = 6, 6, then the sums for both is 12 & the average of S is less than the average pf T & the median of S is greater than the median of T and S has more integers than T.
if S = -6, -6 and T = -10, -9, 7, then the sums for both is -12 & the average of S is less than the average of T & the median of S is greater than the median of T and S has fewer integers than T.
Therefore, Insufficient.

Hence, E ................. :)
_________________

If you don’t make mistakes, you’re not working hard. And Now that’s a Huge mistake.

Intern
Intern
avatar
Joined: 14 Feb 2013
Posts: 33
Schools: Duke '16
Followers: 0

Kudos [?]: 13 [0], given: 14

Re: sum of integers in list S [#permalink] New post 08 May 2013, 01:13
Let average of Set S = A1 , Sum = S1 and number of integers in the list = n1
Let average of Set T = A2, Sum = S2 and number of integers in the list = n2

(1) We know, S = A * n
A1 = S1/n1
A2 = S2/n2
Acc to statement 1, A1 < A2,
so \frac{S1}{n1} < \frac{S2}{n2}

Given, The sum of the integers in list S is the same as the sum of the integers in list T
So, S1 = S2
\frac{1}{n1} < \frac{1}{n2}
n2 < n1

(2) The median of the integers in S is greater than the median of the integers in T. - Not Sufficient


Can someone explain why, Answer is E and not A
_________________

Consider giving +1 Kudo :) when my post helps you.
Also, Good Questions deserve Kudos..!

Expert Post
Verbal Forum Moderator
Verbal Forum Moderator
User avatar
Joined: 10 Oct 2012
Posts: 627
Followers: 41

Kudos [?]: 556 [0], given: 135

Premium Member
Re: sum of integers in list S [#permalink] New post 08 May 2013, 04:11
Expert's post
Quote:

Can someone explain why, Answer is E and not A


We know that \frac{S}{s}<\frac{S}{t} , where S ,s,t are the sum and no of integers in the list S and T respectively.

Thus, s>t for S>0 and t>s for S<0. Insufficient.Remember that the sum of the integers can be negative also.
_________________

All that is equal and not-Deep Dive In-equality

Hit and Trial for Integral Solutions

Intern
Intern
avatar
Joined: 01 May 2013
Posts: 6
Followers: 0

Kudos [?]: 0 [0], given: 12

Re: List S and T [#permalink] New post 09 May 2013, 18:54
ChallengeAnything wrote:
Bunuel wrote:
Bull78 wrote:
Dear Bunuel

I ran into this question in a Gmat Prep exam and the OA is A. It works with positive integers, but it doesn't with negatives. My pick was C, but after a closer look I ended up with E as you.

I chosed C as I believed the two statements force the Sum of both sets to be positve, but I guess it was a poorly analyzed deduction.

I have never runed into a question where the OA was open to dispute, have you?

Thanks in advance



Yes, there are several questions in GMAT Prep with incorrect answers. This question is one of them. A is not correct, answer should be E.


Bunuel,

I guess A sufficiently works.
Because, after reviewing your answer, I tried doing the question again with both positive and negative integers

Please see the explanation below and suggest if i went wrong anywhere.

Data Sufficiency:

1. Arithmetic mean of list S is less than Arithmetic mean of list T


Basic formula used -->
Sum = mean * Number of integers in the set

Given condition in the question:
Sum of the integers in the list S = Sum of the integers in the list T




Integers can be both positive and negative.

Let the List S = {3,-3,10,2,13}


Sum = (3-3+10+2+13) = 25
Number of integers = 5
Mean = 5 (Substitute in the formula)

Then

List T would be
Sum = 25 (Condition given in the question)
Number of integers = ?
Mean of List T Should be more than mean of List S
assume mean = 6
then number of integers in the List T = (25/6) = 4.166

Of course, Number of integers in a List is a number we can still conclude that List T will always be less in the
number of integers with Same sum and With more mean.



but please tell me why did you consider statements 1 and 2 together.....
when statement 1 alone is suffiecient : statement 1 talks about the sum as a whole so : as per the basic formula : sum/num of numbers gives mean and as given sum is equal for both sets and mean of s is less than t clearly says s has more num of integers.
Expert Post
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4688
Location: Pune, India
Followers: 1080

Kudos [?]: 4849 [0], given: 163

Re: List S and T [#permalink] New post 10 May 2013, 07:30
Expert's post
dyuthi92 wrote:
but please tell me why did you consider statements 1 and 2 together.....
when statement 1 alone is suffiecient : statement 1 talks about the sum as a whole so : as per the basic formula : sum/num of numbers gives mean and as given sum is equal for both sets and mean of s is less than t clearly says s has more num of integers.


Consider this:

S = {-1, 0, 1}
T = {-2, -1, 0, 1, 2}
Sum of both the sets is 0. T has more integers.

or

S = {-2, -1, 0, 1, 2}
T = {-1, 0, 1}
Sum of both the sets is 0. S has more integers.

Similarly, think what happens when the sum is negative.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

2 KUDOS received
Manager
Manager
User avatar
Joined: 18 Dec 2012
Posts: 84
Location: India
Concentration: General Management, Strategy
GMAT 1: 660 Q49 V32
GMAT 2: 530 Q37 V25
GPA: 3.32
WE: Manufacturing and Production (Manufacturing)
Followers: 0

Kudos [?]: 22 [2] , given: 20

CAT Tests
Re: average of integers in a list [#permalink] New post 09 Oct 2013, 19:31
2
This post received
KUDOS
pradeepss wrote:
The sum of integers in list S is the same as sum of integers in T. Does S contains more integers than T?

1. the average of integers in S is less than average of integers in T.
2. the median of the integers in S is greater than the median of the integers in T.


Hi Pradeep

Solution :

Statement 1 : Average of S (A1) is less than average of T(A2)

A1<A2

S1 / n1 < S2 / n2

Since S1 = S2 (given)

We can surely find out whether n1 > n2 or not. Sufficient

Statement 2 :

Knowing the median of 2 sets will not let us know the number of integers in each set. (Insufficient)

Option A

Hope it helped.

Cheers
Qoofi
_________________

I'm telling this because you don't get it. You think you get it which is not the same as actually getting it. Get it?

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 22142
Followers: 3407

Kudos [?]: 24904 [0], given: 2697

Re: average of integers in a list [#permalink] New post 10 Oct 2013, 00:36
Expert's post
Qoofi wrote:
pradeepss wrote:
The sum of integers in list S is the same as sum of integers in T. Does S contains more integers than T?

1. the average of integers in S is less than average of integers in T.
2. the median of the integers in S is greater than the median of the integers in T.


Hi Pradeep

Solution :

Statement 1 : Average of S (A1) is less than average of T(A2)

A1<A2

S1 / n1 < S2 / n2

Since S1 = S2 (given)

We can surely find out whether n1 > n2 or not. Sufficient

Statement 2 :

Knowing the median of 2 sets will not let us know the number of integers in each set. (Insufficient)

Option A

Hope it helped.

Cheers
Qoofi


The correct answer is E, not A. Check here: the-sum-of-the-integers-in-list-s-is-the-same-as-the-sum-of-127755.html#p1046371

Hope it helps.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Director
Director
avatar
Joined: 29 Nov 2012
Posts: 930
Followers: 11

Kudos [?]: 251 [0], given: 543

Re: The sum of the integers in list S is the same as the sum of [#permalink] New post 30 Oct 2013, 07:20
Hi Bunuel,

For this question if the stem stated that all the integers are positive would the answer be A?
_________________

Click +1 Kudos if my post helped...

Amazing Free video explanation for all Quant questions from OG 13 and much more http://www.gmatquantum.com/og13th/

GMAT Prep software What if scenarios gmat-prep-software-analysis-and-what-if-scenarios-146146.html

Re: The sum of the integers in list S is the same as the sum of   [#permalink] 30 Oct 2013, 07:20
    Similar topics Author Replies Last post
Similar
Topics:
Sum of integers monirjewel 5 20 Oct 2010, 04:36
1 Sum of integers gmatgg 5 07 Mar 2010, 14:45
the sum of integers Ekin4112 3 22 Feb 2010, 11:01
Experts publish their posts in the topic What is the value of the sum of a list of 'n' odd integers ? vinayaksatapute 7 29 Dec 2009, 07:33
The sum of the integers in list S is the same as the sum of marcodonzelli 3 28 Dec 2007, 09:12
Display posts from previous: Sort by

The sum of the integers in list S is the same as the sum of

  Question banks Downloads My Bookmarks Reviews Important topics  

Go to page    1   2    Next  [ 29 posts ] 



GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.