Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

The water from one outlet, flowing at a constant rate, can [#permalink]
23 Mar 2012, 20:18

2

This post received KUDOS

3

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

5% (low)

Question Stats:

84% (01:51) correct
16% (00:53) wrong based on 595 sessions

The water from one outlet, flowing at a constant rate, can fill a swimming pool in 9 hours. The water from a second outlet, flowing at a constant rate, can fill the same pool in 5 hours. If both outlets are used at the same time, approximately what is the number of hours required to fill the pool?

The water from one outlet, flowing at a constant rate, can fill a swimming pool in 9 hours. The water from a second outlet, flowing at a constant rate, can fill the same pool in 5 hours. If both outlets are used at the same time, approximately what is the number of hours required to fill the pool?

(A) 0.22 (B) 0.31 (C) 2.50 (D) 3.21 (E) 4.56

Always remember RT=W i.e Rate*Time = Work

Also remember that rate can be added or subtracted. For e.g if A do a work in 2 day and B do a work in 2 day. They both of them together will do a work in 1 day.

So now your question first determine both outlets rate. 1st outlet rate = 1/9 (R=W/T here W=1 work, T = 9hrs) 2nd outlet rate = 1/5 (R=W/T here W=1 work, T = 5hrs)

Both of them working together rate = 1st outlet rate + 2nd outlet rate = 1/9+1/5 = 14/45

again apply the formula RT=W T = W/R = 1/14/45 = 45/14 =3.21

Re: The water from one outlet, flowing at a constant rate, can [#permalink]
24 Mar 2012, 01:04

2

This post received KUDOS

Expert's post

1

This post was BOOKMARKED

calreg11 wrote:

The water from one outlet, flowing at a constant rate, can fill a swimming pool in 9 hours. The water from a second outlet, flowing at a constant rate, can fill the same pool in 5 hours. If both outlets are used at the same time, approximately what is the number of hours required to fill the pool?

A. 0.22 B. 0.31 C. 2.50 D. 3.21 E. 4.56

Remember we can add the rates of individual entities to get the combined rate.

Generally for multiple entities: \(\frac{1}{t_1}+\frac{1}{t_2}+\frac{1}{t_3}+...+\frac{1}{t_n}=\frac{1}{T}\), where \(T\) is time needed for these entities to complete a given job working simultaneously and \(t_1\), \(t_2\), ..., \(t_n\) are individual times needed for them to complete the job alone.

So for two pumps, workers, etc. we'll have \(\frac{1}{t_1}+\frac{1}{t_2}=\frac{1}{T}\) --> \(T=\frac{t_1*t_2}{t_1+t_2}\) (general formula for 2 workers, pumps, ...).

Back to the original problem: for two outlets the formula becomes: \(\frac{1}{9}+\frac{1}{5}=\frac{1}{T}\) --> \(\frac{14}{45}=\frac{1}{T}\) --> \(T=\frac{45}{14}=3.something\) (or directly \(T=\frac{t_1*t_2}{t_1+t_2}=\frac{5*9}{5+9}=\frac{45}{14}\)).

Answer: D.

Alliteratively you can do: if both outlets were as slow as the first one, so if both needed 9 hours, then together they would fill the pool in 9/2=4.5 hours, since we don't have two such slow outlets then the answer must be less than 4.5. Similarly, if both outlets were as fast as the second one, so if both needed 5 hours, then together they would fill the pool in 5/2=2.5 hours, since we don't have two such fast outlets then the answer must be more than 2.5. Only answer choice D meets these requirements.

Re: The water from one outlet, flowing at a constant rate, can [#permalink]
25 Feb 2015, 06:38

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________

Re: The water from one outlet, flowing at a constant rate, can [#permalink]
16 Apr 2015, 19:03

1

This post received KUDOS

Expert's post

1

This post was BOOKMARKED

Hi All,

This question is a standard "Work Formula" question. When you have 2 entities sharing a task, you can use the following formula to figure out how long it takes for the 2 entities to complete the task together.

Work = (A)(B)/(A+B) where A and B are the individual times required to complete the task

Here, we're given the rates as 9 hours and 5 hours. Using the Work Formula, we have...

(9)(5)/(9+5) = 45/14

45/14 is a little more than 3.....there's only one answer that matches...

On September 6, 2015, I started my MBA journey at London Business School. I took some pictures on my way from the airport to school, and uploaded them on...

When I was growing up, I read a story about a piccolo player. A master orchestra conductor came to town and he decided to practice with the largest orchestra...

I’ll start off with a quote from another blog post I’ve written : “not all great communicators are great leaders, but all great leaders are great communicators.” Being...