Find all School-related info fast with the new School-Specific MBA Forum

It is currently 02 Oct 2014, 00:49

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

There are 10 solid colored balls in a box, including 1 Green

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
1 KUDOS received
Senior Manager
Senior Manager
avatar
Joined: 07 Sep 2010
Posts: 340
Followers: 3

Kudos [?]: 142 [1] , given: 136

There are 10 solid colored balls in a box, including 1 Green [#permalink] New post 29 Jun 2012, 22:17
1
This post received
KUDOS
3
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  35% (medium)

Question Stats:

73% (02:27) correct 27% (02:04) wrong based on 113 sessions
There are 10 solid colored balls in a box, including 1 Green and 1 Yellow. If 3 of the balls in the box are chosen at random, without replacement, what is the probability that the 3 balls chosen will include the Green ball but not the yellow ball.

A. 1/6
B. 7/30
C. 1/4
D. 3/10
E. 4/15

Experts, request you to please explain this using both Combiantion approach as well as probability approach.

Also, one more doubt, can we solve this question using 1- P(Green, Yellow and Other ball) approach
Thanks
H
[Reveal] Spoiler: OA

_________________

+1 Kudos me, Help me unlocking GMAT Club Tests

2 KUDOS received
Current Student
User avatar
Joined: 23 Oct 2010
Posts: 384
Location: Azerbaijan
Concentration: Finance
Schools: HEC '15 (A)
GMAT 1: 690 Q47 V38
Followers: 13

Kudos [?]: 140 [2] , given: 73

GMAT ToolKit User
Re: There are 10 solid colored balls in a box - Probability [#permalink] New post 29 Jun 2012, 23:21
2
This post received
KUDOS
the worst case is

Some color-some another color- Green

ok, we have 10 balls , 1 of them is yellow, and the another one is green.
need to find that worst case

3*(8/10)*(7/9)*(1/8)=7/30

here the integer 3 means that u can order Some color-some another color-green in 3 ways (green -some c-some an.c.; some c-green-some an.c.-some c.-some an.c.-green)

8/10 means that u can select 8 (10 minus 1 yellow minus 1 green color) out of 10 colors
7/9 means that u can select 7 (9 minus 1 yellow minus 1 green color) out of 9 remaining colors
1/8 means that u have only one green out of 8 remaining colors

hope it helps :)
_________________

Happy are those who dream dreams and are ready to pay the price to make them come true

Expert Post
4 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23066
Followers: 3542

Kudos [?]: 27342 [4] , given: 2734

Re: There are 10 solid colored balls in a box,including 1 Green [#permalink] New post 30 Jun 2012, 02:09
4
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
imhimanshu wrote:
There are 10 solid colored balls in a box,including 1 Green and 1 Yellow. If 3 of the balls in the box are chosen at random, without replacement, what is the probability that the 3 balls chosen will include the Green ball but not the yellow ball.

A. 1/6
B. 7/30
C. 1/4
D. 3/10
E. 4/15

Experts, request you to please explain this using both Combiantion approach as well as probability approach.

Also, one more doubt, can we solve this question using 1- P(Green, Yellow and Other ball) approach
Thanks
H


We have that there are 1 Green (G), 1 Yellow (Y) and 8 some other colors (X) balls in the box.

Approach #1:

We need to find the probability of GXX. P(GXX)=\frac{1}{10}*\frac{8}{9}*\frac{7}{8}*\frac{3!}{2!}=\frac{7}{30}, we are multiplying by \frac{3!}{2!} since GXX scenario could occur in 3 ways: GXX, XGX, or XXG (the number of permutations of 3 letters GXX out of which 2 X's are identical).

Answer: D.

Approach #2:

P=\frac{C^2_8*C^1_1}{C^3_{10}}=\frac{7}{30}, where C^2_8 is ways to select 2 other color balls out of 8, C^1_1 is ways to select 1 green ball, and C^3_{10} is total ways to select 3 balls out of 10.

Answer: D.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Director
Director
User avatar
Joined: 22 Mar 2011
Posts: 613
WE: Science (Education)
Followers: 71

Kudos [?]: 521 [0], given: 43

Re: There are 10 solid colored balls in a box,including 1 Green [#permalink] New post 30 Jun 2012, 04:06
imhimanshu wrote:
There are 10 solid colored balls in a box, including 1 Green and 1 Yellow. If 3 of the balls in the box are chosen at random, without replacement, what is the probability that the 3 balls chosen will include the Green ball but not the yellow ball.

A. 1/6
B. 7/30
C. 1/4
D. 3/10
E. 4/15

Experts, request you to please explain this using both Combiantion approach as well as probability approach.

Also, one more doubt, can we solve this question using 1- P(Green, Yellow and Other ball) approach
Thanks
H


Probability approach, direct not for the complementary event (it is more complicated, not worth trying in this case: it can be one G and also one Y or neither G nor Y, plus an additional different color):
P(G) * P(noG & noY) * P( another noG & noY) * 3 = 1/10 * 8/9 * 7/8 * 3 = 7/30.
We need the factor of 3 because the Green ball can be either the first, second or third.

Answer: B
_________________

PhD in Applied Mathematics
Love GMAT Quant questions and running.

Senior Manager
Senior Manager
avatar
Joined: 07 Sep 2010
Posts: 340
Followers: 3

Kudos [?]: 142 [0], given: 136

Re: There are 10 solid colored balls in a box,including 1 Green [#permalink] New post 30 Jun 2012, 04:17
Hi Bunuel,

Thanks for the reply. I was able to solve it using Approach # 2. But I have doubt in Approach # 1 . Request you to please provide your comments.

Isn't it an assumption that remaining 8 balls are of same color. If the remaining 8 balls each of them are of different color, then the number of arrangements will get changed and hence probability.

Please tell me what I am missing
Thanks.
H

Bunuel wrote:

We have that there are 1 Green (G), 1 Yellow (Y) and 8 some other colors (X) balls in the box.


_________________

+1 Kudos me, Help me unlocking GMAT Club Tests

Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23066
Followers: 3542

Kudos [?]: 27342 [1] , given: 2734

Re: There are 10 solid colored balls in a box,including 1 Green [#permalink] New post 30 Jun 2012, 04:50
1
This post received
KUDOS
Expert's post
imhimanshu wrote:
Hi Bunuel,

Thanks for the reply. I was able to solve it using Approach # 2. But I have doubt in Approach # 1 . Request you to please provide your comments.

Isn't it an assumption that remaining 8 balls are of same color. If the remaining 8 balls each of them are of different color, then the number of arrangements will get changed and hence probability.

Please tell me what I am missing
Thanks.
H

Bunuel wrote:

We have that there are 1 Green (G), 1 Yellow (Y) and 8 some other colors (X) balls in the box.



We are not assuming that 8 other balls are necessarily of some one particular color: they can be of one color or 8 different colors, but for us the only thing which is important that they are of different color than green and yellow.

Consider this: if the first ball selected is green then we are left with 9 balls out of which 1 is yellow and 8 other balls are not yellow (that's the only thing we care), so the probability of selecting non-yellow ball is 8/9.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
User avatar
Status: Trying to crack GMAT
Joined: 17 May 2012
Posts: 39
Location: India
Concentration: Operations, Technology
GMAT Date: 07-11-2012
GPA: 3.82
WE: Engineering (Computer Software)
Followers: 0

Kudos [?]: 7 [0], given: 4

Re: There are 10 solid colored balls in a box, including 1 Green [#permalink] New post 01 Jul 2012, 20:52
Hi Bunuel,

I would like to apologize in advance for asking such a "weird" question but i would still like to know:

Why did u consider that the remaining 8 balls did not have a green or yellow or both in them as well. I mean the question didn't state that the 1 G and 1 Y were the ONLY balls present, right?

But, I guess in PS questions we DO need an answer, so i can understand your logic. In that case, what would happen if this were a DS question? (I mean this IS a 700 level question, right?)
_________________

“When I was young I observed that nine out of ten things I did were failures, so I did ten times more work.” ~ Bernard Shaw


Kudos me if I helped you in any way.

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23066
Followers: 3542

Kudos [?]: 27342 [0], given: 2734

Re: There are 10 solid colored balls in a box, including 1 Green [#permalink] New post 02 Jul 2012, 00:21
Expert's post
Aki wrote:
Hi Bunuel,

I would like to apologize in advance for asking such a "weird" question but i would still like to know:

Why did u consider that the remaining 8 balls did not have a green or yellow or both in them as well. I mean the question didn't state that the 1 G and 1 Y were the ONLY balls present, right?

But, I guess in PS questions we DO need an answer, so i can understand your logic. In that case, what would happen if this were a DS question? (I mean this IS a 700 level question, right?)


But we ARE told that there is is only 1 green ball and only 1 yellow ball in the box, because "there are 10 solid colored balls in a box, including 1 Green and 1 Yellow" means exactly that. How else?

Would it make ANY sense if there were for example 2 green balls and we were told that "there are 10 solid colored balls in a box, including 1 Green and 1 Yellow"?
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
User avatar
Status: Trying to crack GMAT
Joined: 17 May 2012
Posts: 39
Location: India
Concentration: Operations, Technology
GMAT Date: 07-11-2012
GPA: 3.82
WE: Engineering (Computer Software)
Followers: 0

Kudos [?]: 7 [0], given: 4

Re: There are 10 solid colored balls in a box, including 1 Green [#permalink] New post 02 Jul 2012, 01:16
Bunuel wrote:
Aki wrote:
Hi Bunuel,

I would like to apologize in advance for asking such a "weird" question but i would still like to know:

Why did u consider that the remaining 8 balls did not have a green or yellow or both in them as well. I mean the question didn't state that the 1 G and 1 Y were the ONLY balls present, right?

But, I guess in PS questions we DO need an answer, so i can understand your logic. In that case, what would happen if this were a DS question? (I mean this IS a 700 level question, right?)


But we ARE told that there is is only 1 green ball and only 1 yellow ball in the box, because "there are 10 solid colored balls in a box, including 1 Green and 1 Yellow" means exactly that. How else?

Would it make ANY sense if there were for example 2 green balls and we were told that "there are 10 solid colored balls in a box, including 1 Green and 1 Yellow"?


Hmm.. yeah, that does make sense. I'm a non-native English speaker so I tend to over-analyze simple things. In this case, since the word only was missing i.e. there are 10 solid colored balls in a box, including exactly/only 1 Green and 1 Yellow . But yeah, in retrospect this is a Quant question not a Verbal SC :lol: Thanks for the explanation
_________________

“When I was young I observed that nine out of ten things I did were failures, so I did ten times more work.” ~ Bernard Shaw


Kudos me if I helped you in any way.

Current Student
avatar
Joined: 20 Sep 2011
Posts: 22
Followers: 0

Kudos [?]: 12 [0], given: 0

Re: There are 10 solid colored balls in a box, including 1 Green [#permalink] New post 02 Jul 2012, 18:06
Bunuel question for you--and it may be dumb. When I tried the problem I knew that there were three possibilities for getting the green ball. However, I ended up calculating the probabilities for each scenario. Do we know that the probably is the same for each scenario or could it be different?
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23066
Followers: 3542

Kudos [?]: 27342 [0], given: 2734

Re: There are 10 solid colored balls in a box, including 1 Green [#permalink] New post 03 Jul 2012, 02:56
Expert's post
plock3vr wrote:
Bunuel question for you--and it may be dumb. When I tried the problem I knew that there were three possibilities for getting the green ball. However, I ended up calculating the probabilities for each scenario. Do we know that the probably is the same for each scenario or could it be different?


The probability of each case will be the same:
{GXX} - P=\frac{1}{10}*\frac{8}{9}*\frac{7}{8}=\frac{7}{90};

{XGX} - P=\frac{8}{10}*\frac{1}{9}*\frac{7}{8}=\frac{7}{90};

{XXG} - P=\frac{8}{10}*\frac{7}{9}*\frac{1}{8}=\frac{7}{90};

The sum: \frac{7}{90}+\frac{7}{90}+\frac{7}{90}=\frac{7}{30}.

Hope it helps.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

CEO
CEO
User avatar
Joined: 09 Sep 2013
Posts: 2573
Followers: 200

Kudos [?]: 40 [0], given: 0

Premium Member
Re: There are 10 solid colored balls in a box, including 1 Green [#permalink] New post 12 Oct 2013, 05:55
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Manager
Manager
avatar
Joined: 13 Jul 2013
Posts: 77
GMAT 1: 570 Q46 V24
Followers: 0

Kudos [?]: 4 [0], given: 21

Re: There are 10 solid colored balls in a box, including 1 Green [#permalink] New post 02 Jan 2014, 00:59
Bunuel wrote:
plock3vr wrote:
Bunuel question for you--and it may be dumb. When I tried the problem I knew that there were three possibilities for getting the green ball. However, I ended up calculating the probabilities for each scenario. Do we know that the probably is the same for each scenario or could it be different?


The probability of each case will be the same:
{GXX} - P=\frac{1}{10}*\frac{8}{9}*\frac{7}{8}=\frac{7}{90};

{XGX} - P=\frac{8}{10}*\frac{1}{9}*\frac{7}{8}=\frac{7}{90};

{XXG} - P=\frac{8}{10}*\frac{7}{9}*\frac{1}{8}=\frac{7}{90};

The sum: \frac{7}{90}+\frac{7}{90}+\frac{7}{90}=\frac{7}{30}.

Hope it helps.


In the second case {XGX} - P=\frac{8}{10}*\frac{1}{9}*\frac{7}{8}=\frac{7}{90},

how did we get 8/10? If we are considering any ball other than green, why is it not 9/10?
Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23066
Followers: 3542

Kudos [?]: 27342 [1] , given: 2734

Re: There are 10 solid colored balls in a box, including 1 Green [#permalink] New post 02 Jan 2014, 04:59
1
This post received
KUDOS
Expert's post
theGame001 wrote:
Bunuel wrote:
plock3vr wrote:
Bunuel question for you--and it may be dumb. When I tried the problem I knew that there were three possibilities for getting the green ball. However, I ended up calculating the probabilities for each scenario. Do we know that the probably is the same for each scenario or could it be different?


The probability of each case will be the same:
{GXX} - P=\frac{1}{10}*\frac{8}{9}*\frac{7}{8}=\frac{7}{90};

{XGX} - P=\frac{8}{10}*\frac{1}{9}*\frac{7}{8}=\frac{7}{90};

{XXG} - P=\frac{8}{10}*\frac{7}{9}*\frac{1}{8}=\frac{7}{90};

The sum: \frac{7}{90}+\frac{7}{90}+\frac{7}{90}=\frac{7}{30}.

Hope it helps.


In the second case {XGX} - P=\frac{8}{10}*\frac{1}{9}*\frac{7}{8}=\frac{7}{90},

how did we get 8/10? If we are considering any ball other than green, why is it not 9/10?


Because we don't need the yellow ball, X is any but green and yellow.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

1 KUDOS received
Manager
Manager
User avatar
Joined: 14 Jan 2013
Posts: 157
Concentration: Strategy, Technology
GMAT Date: 08-01-2013
GPA: 3.7
WE: Consulting (Consulting)
Followers: 2

Kudos [?]: 54 [1] , given: 29

Re: There are 10 solid colored balls in a box,including 1 Green [#permalink] New post 14 Jan 2014, 15:54
1
This post received
KUDOS
Bunuel wrote:
imhimanshu wrote:
There are 10 solid colored balls in a box,including 1 Green and 1 Yellow. If 3 of the balls in the box are chosen at random, without replacement, what is the probability that the 3 balls chosen will include the Green ball but not the yellow ball.

A. 1/6
B. 7/30
C. 1/4
D. 3/10
E. 4/15

Experts, request you to please explain this using both Combiantion approach as well as probability approach.

Also, one more doubt, can we solve this question using 1- P(Green, Yellow and Other ball) approach
Thanks
H


We have that there are 1 Green (G), 1 Yellow (Y) and 8 some other colors (X) balls in the box.

Approach #1:

We need to find the probability of GXX. P(GXX)=\frac{1}{10}*\frac{8}{9}*\frac{7}{8}*\frac{3!}{2!}=\frac{7}{30}, we are multiplying by \frac{3!}{2!} since GXX scenario could occur in 3 ways: GXX, GXG, or XGG (the number of permutations of 3 letters GXX out of which 2 X's are identical).

Answer: D.

Approach #2:

P=\frac{C^2_8*C^1_1}{C^3_{10}}=\frac{7}{30}, where C^2_8 is ways to select 2 other color balls out of 8, C^1_1 is ways to select 1 green ball, and C^3_{10} is total ways to select 3 balls out of 10.

Answer: D.

Hope it's clear.



Hi Bunuel,

I am confused with the red part.

I feel it should be - GXX. XGX, XXG. Please suggest. Thanks
_________________

"Where are my Kudos" ............ Good Question = kudos

"Start enjoying all phases" & all Sections

__________________________________________________________________
http://gmatclub.com/forum/collection-of-articles-on-critical-reasoning-159959.html

percentages-700-800-level-questions-130588.html

700-to-800-level-quant-question-with-detail-soluition-143321.html

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23066
Followers: 3542

Kudos [?]: 27342 [0], given: 2734

Re: There are 10 solid colored balls in a box,including 1 Green [#permalink] New post 14 Jan 2014, 23:58
Expert's post
Mountain14 wrote:
Bunuel wrote:
imhimanshu wrote:
There are 10 solid colored balls in a box,including 1 Green and 1 Yellow. If 3 of the balls in the box are chosen at random, without replacement, what is the probability that the 3 balls chosen will include the Green ball but not the yellow ball.

A. 1/6
B. 7/30
C. 1/4
D. 3/10
E. 4/15

Experts, request you to please explain this using both Combiantion approach as well as probability approach.

Also, one more doubt, can we solve this question using 1- P(Green, Yellow and Other ball) approach
Thanks
H


We have that there are 1 Green (G), 1 Yellow (Y) and 8 some other colors (X) balls in the box.

Approach #1:

We need to find the probability of GXX. P(GXX)=\frac{1}{10}*\frac{8}{9}*\frac{7}{8}*\frac{3!}{2!}=\frac{7}{30}, we are multiplying by \frac{3!}{2!} since GXX scenario could occur in 3 ways: GXX, GXG, or XGG (the number of permutations of 3 letters GXX out of which 2 X's are identical).

Answer: D.

Approach #2:

P=\frac{C^2_8*C^1_1}{C^3_{10}}=\frac{7}{30}, where C^2_8 is ways to select 2 other color balls out of 8, C^1_1 is ways to select 1 green ball, and C^3_{10} is total ways to select 3 balls out of 10.

Answer: D.

Hope it's clear.



Hi Bunuel,

I am confused with the red part.

I feel it should be - GXX. XGX, XXG. Please suggest. Thanks


Correct, It was a typo. Edited. Thank you.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Re: There are 10 solid colored balls in a box,including 1 Green   [#permalink] 14 Jan 2014, 23:58
    Similar topics Author Replies Last post
Similar
Topics:
2 In a jar there are balls in different colors: blue, red, green and yel mohana 11 07 Oct 2009, 17:48
1 25 balls in a box. colors: red, white or blue. each numbered successstory 1 01 Feb 2007, 04:11
There are 60 balls including 5 colours. 7 of them are green. getzgetzu 4 05 May 2006, 23:30
A box contains unlimited no. of balls of 4 diff. colors. How tingle 2 09 Oct 2005, 18:33
In a box there are A green balls, 3A + 6 red balls and 2 HIMALAYA 3 14 Aug 2005, 19:42
Display posts from previous: Sort by

There are 10 solid colored balls in a box, including 1 Green

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.