Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
There are 10 women and 3 men in Room A. One person is picked [#permalink]
12 Aug 2010, 03:52
2
This post received KUDOS
3
This post was BOOKMARKED
00:00
A
B
C
D
E
Difficulty:
35% (medium)
Question Stats:
67% (02:18) correct
33% (01:06) wrong based on 161 sessions
There are 10 women and 3 men in Room A. One person is picked at random from Room A and moved to room B, where there are already 3 women and 5 men. If a single person is then to be picked from room B, what is the probability that a woman will be picked?
Re: Probability Question [#permalink]
05 Feb 2013, 16:29
2
This post received KUDOS
HarishV wrote:
There are 10 women and 3 men in Room A. One person is picked at random from Room A and moved to room B, where there are already 3 women and 5 men. If a single person is then used to be picked from Room B, what is the probability that a woman would be picked.
{Please try solving the problem using the Conditional Probability formula}....Would be very helpful to know how to determine the probability of 2 events when occurring simultaneously}
Using a tree diagram ( see the attachement)
Hence,
WW = \(\frac{10}{13}*\frac{4}{9}=\frac{40}{117}\)
MW = \(\frac{3}{13}*\frac{3}{9}=\frac{9}{117}\)
Finally, the probability that a woman would be picked is \(P= \frac{40}{117} + \frac{9}{117}\)=\frac{49}{117}
Attachments
Prob.png [ 9.74 KiB | Viewed 4473 times ]
_________________
KUDOS is the good manner to help the entire community.
"If you don't change your life, your life will change you"
Re: There are 10 women and 3 men in Room A. One person is picked [#permalink]
15 Sep 2013, 21:17
1
This post received KUDOS
The probability that a woman is picked from room A is 10/13 the probability that a woman is picked from room B is 4/9. Because we are calculating the probability of picking a woman from room A AND then from room B, we need to multiply these two probabilities: 10/13 x 4/9 = 40/117 The probability that a man is picked from room A is 3/13. If that man is then added to room B, this means that there are 3 women and 6 men in room B. So, the probability that a woman is picked from room B is 3/9. Again, we multiply thse two probabilities: 3/13 x 3/9 = 9/117 To find the total probability that a woman will be picked from room B, we need to take both scenarios into account. In other words, we need to consider the probability of picking a woman and a woman OR a man and a woman. In probabilities, OR means addition. If we add the two probabilities, we get: 40/117 + 9/117 = 49/117 The correct answer is B.
Re: Probability Question [#permalink]
14 Aug 2010, 01:02
What is the OA? If M picked from room A, room B probability of picking W is 4/9 If W picked from room A, room B probability of picking W is 3/9
Conditional Probability P(W in B and M picked in A) = P(W given M picked in A)*P(M picked in A) = 10/13*4/9 P(W in B and W picked in A) = P(W given W picked in A)*P(W picked in A) = 3/13*3/9
Re: There are 10 women and 3 men in Room A. One person is picked [#permalink]
12 Nov 2014, 00:22
Hello from the GMAT Club BumpBot!
Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).
Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________
Re: There are 10 women and 3 men in Room A. One person is picked [#permalink]
01 Jan 2015, 12:08
ARUNPLDb wrote:
The probability that a woman is picked from room A is 10/13 the probability that a woman is picked from room B is 4/9. Because we are calculating the probability of picking a woman from room A AND then from room B, we need to multiply these two probabilities: 10/13 x 4/9 = 40/117 The probability that a man is picked from room A is 3/13. If that man is then added to room B, this means that there are 3 women and 6 men in room B. So, the probability that a woman is picked from room B is 3/9. Again, we multiply thse two probabilities: 3/13 x 3/9 = 9/117 To find the total probability that a woman will be picked from room B, we need to take both scenarios into account. In other words, we need to consider the probability of picking a woman and a woman OR a man and a woman. In probabilities, OR means addition. If we add the two probabilities, we get: 40/117 + 9/117 = 49/117 The correct answer is B.
Why do we need to multiply with the probabilities of woman/man picked from room A. After a person is moved from A to B, we will have either 3 women or 4 women. So why not just add 3/9 + 4/9?? Why to bother about the probability of picking a person from A??
Re: There are 10 women and 3 men in Room A. One person is picked [#permalink]
01 Jan 2015, 16:43
Expert's post
Hi saurabh99,
You have to factor in the probability that a man or a woman is transferred from Room A to Room B because THAT outcome affects the probability of the next calculation. While you are correct that there will either be 3 women or 4 women in the room, the probability of one or the other is NOT the same.
Missing that part of the calculation is the equivalent of thinking "there are 3 women and 6 men in a room, so randomly picking 1 person can only lead to 2 results: 1 man or 1 woman. Thus, the odds of picking a woman are 1 in 2." Probability questions on the GMAT are almost always "weighted" - the number of each option affects the probability/calculation, so you have to factor in the "weights."
As I’m halfway through my second year now, graduation is now rapidly approaching. I’ve neglected this blog in the last year, mainly because I felt I didn’...
Perhaps known best for its men’s basketball team – winners of five national championships, including last year’s – Duke University is also home to an elite full-time MBA...
Hilary Term has only started and we can feel the heat already. The two weeks have been packed with activities and submissions, giving a peek into what will follow...