Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
There are 6 people at a party sitting at a round table with 6 seats: A [#permalink]
08 Aug 2011, 12:00
1
This post received KUDOS
3
This post was BOOKMARKED
00:00
A
B
C
D
E
Difficulty:
85% (hard)
Question Stats:
47% (02:08) correct
53% (01:33) wrong based on 104 sessions
There are 6 people at a party sitting at a round table with 6 seats: A, B, C, D, E and F. A CANNOT sit next to either D or F. How many ways can the 6 people be seated?
Re: There are 6 people at a party sitting at a round table with 6 seats: A [#permalink]
08 Aug 2011, 13:38
When items are arranged in circle the permutation formula is (n-1)!
so in this case, let us first calculate total number of ways in which 6 people can be arranged. from permutation formula when items are arranged in circle we have (6-1)! possible permutation. (6-1)! = 120.
But we have restrictions that A cannot seat next to d or F. let us calculate the ways in which A can seat next to D. If AD sits together then 4 other people have to be arranged. so again we have apply permutation formula for 4 items in circular arrangements. we get (4-1)! = 3! =6. so A and D sit next to each other in 6 ways, similarly A and F sit next to each other in 6 ways. so to arrive at our answer we have to subtract ways in which A sits next to D & F from total number of ways these six people are sitting. so our answer is 120- (6 +6) = 108.
edited -I made an error in calculating in this post and this solution is wrong.
Last edited by Aj85 on 08 Aug 2011, 15:08, edited 1 time in total.
Re: There are 6 people at a party sitting at a round table with 6 seats: A [#permalink]
08 Aug 2011, 14:22
Aj85 wrote:
When items are arranged in circle the permutation formula is (n-1)!
so in this case, let us first calculate total number of ways in which 6 people can be arranged. from permutation formula when items are arranged in circle we have (6-1)! possible permutation. (6-1)! = 120.
But we have restrictions that A cannot seat next to d or F. let us calculate the ways in which A can seat next to D. If AD sits together then 4 other people have to be arranged. so again we have apply permutation formula for 4 items in circular arrangements. we get (4-1)! = 3! =6. so A and D sit next to each other in 6 ways, similarly A and F sit next to each other in 6 ways. so to arrive at our answer we have to subtract ways in which A sits next to D & F from total number of ways these six people are sitting. so our answer is 120- (6 +6) = 108.
Answer C.
A B C D E F can be seated in 5! ways.
When you consider AD as 1, total number of people becomes AD - B - C - E - F --> 5 not 4 Similarly, when AF is 1, total number of people AF B C D E --> 5 not 4
There would also be a case where DAF will sit together, and we have to eliminate that case from the total number of combinations because we have included it twice when A sits with D and F each time.
Please help explain this, your answer may be correct but "If AD sits together then 4 other people have to be arranged" AD as a person has to be arranged too.
Re: There are 6 people at a party sitting at a round table with 6 seats: A [#permalink]
08 Aug 2011, 15:04
sap wrote:
A B C D E F can be seated in 5! ways.
When you consider AD as 1, total number of people becomes AD - B - C - E - F --> 5 not 4 Similarly, when AF is 1, total number of people AF B C D E --> 5 not 4
There would also be a case where DAF will sit together, and we have to eliminate that case from the total number of combinations because we have included it twice when A sits with D and F each time.
Please help explain this, your answer may be correct but "If AD sits together then 4 other people have to be arranged" AD as a person has to be arranged too.
Thanks Sap for pointing out my error, I did rechecked the question . Actually I learned that when it is circular arrangement we subtract 1, so I carelessly subtracted 1 from each and every stage where i had to compute permutation including not counting ad as one item. So the solution will be adcdef = (6-1)! = 120. Then ad-(another 4people) = (5-1)! = 24 similarly AF(another 4 people) = (5-1)! =24. so we have to deduct 24 +24 from 120 which equals to 72. But we have double counted daf options. so we have to add cases where DAF are toghter. DAF -(another 3peopl) = (4-1)! = 6. DAF itself will have 2 permutations, so we multiply 6 by 2 which equals to 12. Now we add 72+ 12 =84. so now the answer by this method = 84. I hope some experts solve this question correctly.
Re: There are 6 people at a party sitting at a round table with 6 seats: A [#permalink]
08 Aug 2011, 20:57
Aj85 wrote:
sap wrote:
A B C D E F can be seated in 5! ways.
When you consider AD as 1, total number of people becomes AD - B - C - E - F --> 5 not 4 Similarly, when AF is 1, total number of people AF B C D E --> 5 not 4
There would also be a case where DAF will sit together, and we have to eliminate that case from the total number of combinations because we have included it twice when A sits with D and F each time.
Please help explain this, your answer may be correct but "If AD sits together then 4 other people have to be arranged" AD as a person has to be arranged too.
Thanks Sap for pointing out my error, I did rechecked the question . Actually I learned that when it is circular arrangement we subtract 1, so I carelessly subtracted 1 from each and every stage where i had to compute permutation including not counting ad as one item. So the solution will be adcdef = (6-1)! = 120. Then ad-(another 4people) = (5-1)! = 24 similarly AF(another 4 people) = (5-1)! =24. so we have to deduct 24 +24 from 120 which equals to 72. But we have double counted daf options. so we have to add cases where DAF are toghter. DAF -(another 3peopl) = (4-1)! = 6. DAF itself will have 2 permutations, so we multiply 6 by 2 which equals to 12. Now we add 72+ 12 =84. so now the answer by this method = 84. I hope some experts solve this question correctly.
I solved it in the same way and got 84, but the answer is C. If the question is: A cannot sit next to both D and F(A cannot sit between D and F), then the answer would be 108.
Also, I saw another explanation on the forum- fix a position for A. It has two adjacent positions one on either side. D and F cannot take these two positions. So, D and F can be placed in the remaining 3 positions in 3P2 = 6ways. The remaining three positions can be filled by B,C,E in 3! ways. So, total number of ways = 6*6 = 36 ways. I don't know how good is this explanation in a circular arrangement...
Re: There are 6 people at a party sitting at a round table with 6 seats: A [#permalink]
08 Aug 2011, 21:09
Aj85 wrote:
sap wrote:
A B C D E F can be seated in 5! ways.
When you consider AD as 1, total number of people becomes AD - B - C - E - F --> 5 not 4 Similarly, when AF is 1, total number of people AF B C D E --> 5 not 4
There would also be a case where DAF will sit together, and we have to eliminate that case from the total number of combinations because we have included it twice when A sits with D and F each time.
Please help explain this, your answer may be correct but "If AD sits together then 4 other people have to be arranged" AD as a person has to be arranged too.
Thanks Sap for pointing out my error, I did rechecked the question . Actually I learned that when it is circular arrangement we subtract 1, so I carelessly subtracted 1 from each and every stage where i had to compute permutation including not counting ad as one item. So the solution will be adcdef = (6-1)! = 120. Then ad-(another 4people) = (5-1)! = 24 similarly AF(another 4 people) = (5-1)! =24. so we have to deduct 24 +24 from 120 which equals to 72. But we have double counted daf options. so we have to add cases where DAF are toghter. DAF -(another 3peopl) = (4-1)! = 6. DAF itself will have 2 permutations, so we multiply 6 by 2 which equals to 12. Now we add 72+ 12 =84. so now the answer by this method = 84. I hope some experts solve this question correctly.
Guys, in addition to above explanation- You have subtracted the cases AD and AF but you have neglected the cases DA and FA. Each of which will be having 24 cases. So, you need to subtract 2*24 from 84 which will give 84-48 = 36.
Re: There are 6 people at a party sitting at a round table with 6 seats: A [#permalink]
08 Aug 2011, 21:32
Viv, I didnt count ad and da because i thought they were in circles, I mean in linear arrangement if we have A B and C we can arrange like ABC, ACB, BAC, ACA, CAB and CBA, but when they are in circle ABC and BCA and CAB are same, That's what I learnt for circular arrangements. of course I may be wrong. But its very interesting question, hope someone solves it correctly . It will be great to see a correct solution for this question.
Re: There are 6 people at a party sitting at a round table with 6 seats: A [#permalink]
10 Aug 2011, 06:57
Aj85 wrote:
Viv, I didnt count ad and da because i thought they were in circles, I mean in linear arrangement if we have A B and C we can arrange like ABC, ACB, BAC, ACA, CAB and CBA, but when they are in circle ABC and BCA and CAB are same, That's what I learnt for circular arrangements. of course I may be wrong. But its very interesting question, hope someone solves it correctly . It will be great to see a correct solution for this question.
Aj85, You are correct to say that, in circular arrangements ABC, ACB, BAC, ACA, CAB and CBA will represent same arrangement. Hence one we have subtracted AF and AD we need not subtract FA and DA.
I am too getting the answer as 84.
@sap can U please let us know the source and the OA
Re: There are 6 people at a party sitting at a round table with 6 seats: A [#permalink]
12 Aug 2011, 19:21
Sudhanshuacharya wrote:
Aj85 wrote:
Viv, I didnt count ad and da because i thought they were in circles, I mean in linear arrangement if we have A B and C we can arrange like ABC, ACB, BAC, ACA, CAB and CBA, but when they are in circle ABC and BCA and CAB are same, That's what I learnt for circular arrangements. of course I may be wrong. But its very interesting question, hope someone solves it correctly . It will be great to see a correct solution for this question.
Aj85, You are correct to say that, in circular arrangements ABC, ACB, BAC, ACA, CAB and CBA will represent same arrangement. Hence one we have subtracted AF and AD we need not subtract FA and DA.
I am too getting the answer as 84.
@sap can U please let us know the source and the OA
ok, here's an attempt
A,B,C,D,E and F can sit in (6-1)! ways -- 120
Now consider this, when we take AD as one person all of them can sit in AD, B, C, D ,E --> (5-1)! --> 24
now, this calculation considers clockwise and anti clockwise as different, i.e AD is different from DA. Therefore we have to divide this figure by 2, because We do not want to distinguish between AD and DA.
Hence there are 12 cases when AD sit to each other ( irrespective of AD or DA )
Similarly, there are 12 cases when AF sit to each other.
Similarly, we can say ADF can also be clockwise and anticlockwise, but we have to realize that, when counting AD and AF we have counted DAF or FAD TWICE ( once for each ) therefore we need to deduct the arrangement for DAF only once.
If DAF were 1 person, possible number of arrangements -- ADF,B,C,E --> 3!
We will not count it twice because we need to deduct this only once from AD and AF combination !
Re: There are 6 people at a party sitting at a round table with 6 seats: A [#permalink]
05 Oct 2011, 20:12
i just came across this problem in the manhattan review turbocharge math. answer key says C. 108. The solutions manual has an explanation that I don't really understand.
Re: There are 6 people at a party sitting at a round table with 6 seats: A [#permalink]
05 Oct 2011, 21:08
mrdanielkim wrote:
i just came across this problem in the manhattan review turbocharge math. answer key says C. 108. The solutions manual has an explanation that I don't really understand.
Re: There are 6 people at a party sitting at a round table with 6 seats: A [#permalink]
05 Oct 2011, 21:47
i figured it out after taking a break from studying. thanks anyway!
here's the solution anyway, though the book has the question worded differently:
Q: IN how many ways can 6 people be seated at a round table if one of those seated cannot sit next to two of the other five:
A: Six people can be seated around a round table in 5! ways. there are 2 ways that the two unwelcome people could sit next to the person in question and 3! ways of arranging the other three. This is subtracted from the base case of 5!, giving the result of 108.
Re: There are 6 people at a party sitting at a round table with 6 seats: A [#permalink]
06 Oct 2011, 03:01
1
This post received KUDOS
Expert's post
2
This post was BOOKMARKED
mrdanielkim wrote:
i figured it out after taking a break from studying. thanks anyway!
here's the solution anyway, though the book has the question worded differently:
Q: IN how many ways can 6 people be seated at a round table if one of those seated cannot sit next to two of the other five:
A: Six people can be seated around a round table in 5! ways. there are 2 ways that the two unwelcome people could sit next to the person in question and 3! ways of arranging the other three. This is subtracted from the base case of 5!, giving the result of 108.
This question is different from the one posted above.
There are two versions and the answer would be different in the two cases.
Let me pick this version first: There are 6 people (say A, B, C, D, E and F). They have to sit around a circular table such that one of them, say A, cannot sit next to D and F at the same time. (This means that A can sit next to D but not while F is on A's other side. Similarly, A can sit next to F too but not while D is on A's other side)
Total number of ways of arranging 6 people in a circle = 5! = 120
In how many of these 120 ways will A be between D and F?
We make DAF sit on three consecutive seats and make other 3 people sit in 3! ways. or we make FAD sit of three consecutive seats and make other 3 people sit in 3! ways. In all, we make A sit next to D and F simultaneously in 12 ways.
120 - 12 = 108 is the number of ways in which D and F are not sitting next to A at the same time.
The second version which seemed like the intended meaning of the original poster: There are 6 people (say A, B, C, D, E and F). They have to sit around a circular table such that one of them, say A, can sit neither next to D nor next to F. (This means that A cannot sit next to D in any case and A cannot sit next to F in any case.)
Here, we say that A has to sit next to two of B, C and E. Let's choose 2 of B, C and E in 3C2 = 3 ways. Let's arrange them around A in 2 ways (say we choose B and C. We could have BAC or CAB). We make these 3 sit on any 3 consecutive seats in 1 way. Number of ways of arranging these 3 people = 3*2 = 6
The rest of the 3 people can sit in 3! = 6 ways Total number of ways in which A will sit neither next to D nor next to F = 6*6 = 36 ways _________________
Re: There are 6 people at a party sitting at a round table with 6 seats: A [#permalink]
31 Oct 2014, 08:00
Hello from the GMAT Club BumpBot!
Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).
Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________
The “3 golden nuggets” of MBA admission process With ten years of experience helping prospective students with MBA admissions and career progression, I will be writing this blog through...
You know what’s worse than getting a ding at one of your dreams schools . Yes its getting that horrid wait-listed email . This limbo is frustrating as hell . Somewhere...