Find all School-related info fast with the new School-Specific MBA Forum

It is currently 24 Oct 2014, 02:44

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Three dice are thrown. What is the probability that the firs

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
1 KUDOS received
Intern
Intern
avatar
Joined: 10 Sep 2013
Posts: 7
Followers: 0

Kudos [?]: 5 [1] , given: 1

Three dice are thrown. What is the probability that the firs [#permalink] New post 10 Sep 2013, 01:30
1
This post received
KUDOS
3
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  75% (hard)

Question Stats:

49% (03:23) correct 51% (01:46) wrong based on 109 sessions
Three dice are thrown. What is the probability that the first two show the same number, and the last one a different number?

A. 3/6
B. 15/36
C.1/216
D. 15/216
E. 1/6


So I did 1/6 * 1/6 * 5/6 (first two show the same number, the last one another number) = 5/216. then i multiply by 3 and get 15/216.

whats wrong with what I did?

OA:
[Reveal] Spoiler:
B
[Reveal] Spoiler: OA

Last edited by Bunuel on 10 Sep 2013, 01:47, edited 1 time in total.
Edited the question.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23407
Followers: 3611

Kudos [?]: 28877 [0], given: 2859

Re: Three dice are thrown. What is the probability that the firs [#permalink] New post 10 Sep 2013, 01:57
Expert's post
sandra123 wrote:
Three dice are thrown. What is the probability that the first two show the same number, and the last one a different number?

A. 3/6
B. 15/36
C.1/216
D. 15/216
E. 1/6


So I did 1/6 * 1/6 * 5/6 (first two show the same number, the last one another number) = 5/216. then i multiply by 3 and get 15/216.

whats wrong with what I did?

OA:
[Reveal] Spoiler:
B


The question asks about the probability that two of the dice show the same number but the third dice shows a different number.

Total # of outcomes is 6^3;

Favorable outcomes are all possible scenarios of XXY: C^1_6*C^1_5*\frac{3!}{2!}=6*5*3=90, where C^1_6 is # of ways to pick X (the number which shows twice), C^1_5 is # of ways to pick Y (out of 5 numbers left) and \frac{3!}{2!} is # of permutation of 3 letters XXY out of which 2 X's are identical.

P=Favorable/Total=90/6^3=15/36.

Answer: B.

Or: P(XXY)=1*1/6*5/6*3!/2! --> (any, the same one, different one).

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 15 Jul 2013
Posts: 9
Followers: 1

Kudos [?]: 0 [0], given: 2

Re: Three dice are thrown. What is the probability that the firs [#permalink] New post 10 Sep 2013, 05:48
did I read this questions wrong? How it was written made me think that all three dice were thrown individually, and the number on the first two had to match, with the number on the third die being thrown had to be the different number. So I interpreted that the pattern had to be xxy.

Is this an easy mistake to make or is it just me?
Intern
Intern
avatar
Joined: 15 Jul 2013
Posts: 9
Followers: 1

Kudos [?]: 0 [0], given: 2

Re: Three dice are thrown. What is the probability that the firs [#permalink] New post 10 Sep 2013, 05:50
sandra123 wrote:
Three dice are thrown. What is the probability that the first two show the same number, and the last one a different number?

A. 3/6
B. 15/36
C.1/216
D. 15/216
E. 1/6


So I did 1/6 * 1/6 * 5/6 (first two show the same number, the last one another number) = 5/216. then i multiply by 3 and get 15/216.

whats wrong with what I did?

OA:
[Reveal] Spoiler:
B



To do it this way it would be 1/1 * 1/6 * 5/6 = 5/36. Then multiply by 3 to get 15/36. It is 1/1 because the first die can be any number, not a specific number.
Intern
Intern
avatar
Joined: 29 Jan 2013
Posts: 43
Followers: 1

Kudos [?]: 12 [0], given: 21

Re: Three dice are thrown. What is the probability that the firs [#permalink] New post 10 Sep 2013, 17:37
why are you multiplying by 3. It is clearly given that first two must be same and third must be different - i.e clearly XXY

i.e (1,1, 2-6), (2,2, 1-6 without 2) ....(6,6, 1-5) - total 30 favorable outcomes??

When multiplying by 3 arent you considering XYX and YXX also? Can someone explain where i went wrong?
Intern
Intern
avatar
Joined: 07 Sep 2013
Posts: 25
Concentration: Entrepreneurship
GMAT 1: Q V
GPA: 3.52
Followers: 0

Kudos [?]: 5 [0], given: 0

Re: Three dice are thrown. What is the probability that the firs [#permalink] New post 10 Sep 2013, 23:22
The question talks about the "first two" rolls and the "last" roll, so I don't think that Bunuel's answer is correct. He's solving for the probability that ANY TWO are the same and the other is different.

The correct answer is 1/1 x 1/6 x 5/6 = 5/36

Where did this question come from?

t1000
Intern
Intern
avatar
Joined: 30 Nov 2012
Posts: 30
Followers: 0

Kudos [?]: 1 [0], given: 20

Re: Three dice are thrown. What is the probability that the firs [#permalink] New post 10 Sep 2013, 23:35
tchang wrote:
The question talks about the "first two" rolls and the "last" roll, so I don't think that Bunuel's answer is correct. He's solving for the probability that ANY TWO are the same and the other is different.

The correct answer is 1/1 x 1/6 x 5/6 = 5/36

Where did this question come from?

t1000


I approached it this way too....what are we doing wrong Bunuel??
Intern
Intern
avatar
Joined: 10 Sep 2013
Posts: 7
Followers: 0

Kudos [?]: 5 [0], given: 1

Re: Three dice are thrown. What is the probability that the firs [#permalink] New post 11 Sep 2013, 00:28
ROFLZZZ wrote:
sandra123 wrote:
Three dice are thrown. What is the probability that the first two show the same number, and the last one a different number?

A. 3/6
B. 15/36
C.1/216
D. 15/216
E. 1/6


So I did 1/6 * 1/6 * 5/6 (first two show the same number, the last one another number) = 5/216. then i multiply by 3 and get 15/216.

whats wrong with what I did?

OA:
[Reveal] Spoiler:
B



To do it this way it would be 1/1 * 1/6 * 5/6 = 5/36. Then multiply by 3 to get 15/36. It is 1/1 because the first die can be any number, not a specific number.


ok but still can be any number out of the 6 on the die. it cant be just any number, for eg ten. Also why did you multiply 5/36 with three?
first two had to be the same number, last had to be different.
also, its manhattan
Senior Manager
Senior Manager
avatar
Joined: 21 Jan 2010
Posts: 348
Followers: 1

Kudos [?]: 76 [0], given: 12

Re: Three dice are thrown. What is the probability that the firs [#permalink] New post 11 Sep 2013, 23:28
sandra123 wrote:
Three dice are thrown. What is the probability that the first two show the same number, and the last one a different number?

A. 3/6
B. 15/36
C.1/216
D. 15/216
E. 1/6


So I did 1/6 * 1/6 * 5/6 (first two show the same number, the last one another number) = 5/216. then i multiply by 3 and get 15/216.

whats wrong with what I did?

OA:
[Reveal] Spoiler:
B


Total cases = 216.
Favorable cases: 112,121,211....
If you fix one two numbers as above , their can be 15 such cases. You can write it down if needed for clarity and there are 6 numbers. So fav cases= 15x 6 = 90.
probability = 15/36
Intern
Intern
avatar
Joined: 07 Sep 2013
Posts: 25
Concentration: Entrepreneurship
GMAT 1: Q V
GPA: 3.52
Followers: 0

Kudos [?]: 5 [0], given: 0

Re: Three dice are thrown. What is the probability that the firs [#permalink] New post 12 Sep 2013, 21:05
Bluelagoon,

The question talks about the first two rolls matching and the third doesn't

In your examples:

112 would match

but 121 would be the first and third rolls matching
and 211 would be the second and third rolls matching

The prompt clearly says the first two rolls match and the third doesn't

t1000
Manager
Manager
User avatar
Joined: 24 Oct 2013
Posts: 163
Location: Canada
GMAT 1: Q49 V38
WE: Design (Transportation)
Followers: 4

Kudos [?]: 3 [0], given: 81

GMAT ToolKit User Premium Member CAT Tests
Re: Three dice are thrown. What is the probability that the firs [#permalink] New post 20 Jun 2014, 16:00
Bunuel wrote:
sandra123 wrote:
Three dice are thrown. What is the probability that the first two show the same number, and the last one a different number?

A. 3/6
B. 15/36
C.1/216
D. 15/216
E. 1/6


So I did 1/6 * 1/6 * 5/6 (first two show the same number, the last one another number) = 5/216. then i multiply by 3 and get 15/216.

whats wrong with what I did?

OA:
[Reveal] Spoiler:
B


The question asks about the probability that two of the dice show the same number but the third dice shows a different number.

Total # of outcomes is 6^3;

Favorable outcomes are all possible scenarios of XXY: C^1_6*C^1_5*\frac{3!}{2!}=6*5*3=90, where C^1_6 is # of ways to pick X (the number which shows twice), C^1_5 is # of ways to pick Y (out of 5 numbers left) and \frac{3!}{2!} is # of permutation of 3 letters XXY out of which 2 X's are identical.

P=Favorable/Total=90/6^3=15/36.

Answer: B.

Or: P(XXY)=1*1/6*5/6*3!/2! --> (any, the same one, different one).

Hope it's clear.


Bunuel it specifically says FIRST two show the same number and LAST one shows different. What you did here would be an answer to 'ANY TWO showing same and the REMAINING showing different'. The questions states the order too by mentioning FIRST/LAST. Please clear me if i'm wrong.
Intern
Intern
avatar
Joined: 07 Sep 2012
Posts: 3
Followers: 0

Kudos [?]: 0 [0], given: 7

GMAT ToolKit User
Re: Three dice are thrown. What is the probability that the firs [#permalink] New post 20 Jun 2014, 18:48
this is clearly a problem where the sequence matters hance the favourable outcomes are 30 for XXY excluding XyX and YXX. But a great problem to sort out basic understanding and generate debate. Kudos

gauravkaushik8591 wrote:
Bunuel wrote:
sandra123 wrote:
Three dice are thrown. What is the probability that the first two show the same number, and the last one a different number?

A. 3/6
B. 15/36
C.1/216
D. 15/216
E. 1/6


So I did 1/6 * 1/6 * 5/6 (first two show the same number, the last one another number) = 5/216. then i multiply by 3 and get 15/216.

whats wrong with what I did?

OA:
[Reveal] Spoiler:
B


The question asks about the probability that two of the dice show the same number but the third dice shows a different number.

Total # of outcomes is 6^3;

Favorable outcomes are all possible scenarios of XXY: C^1_6*C^1_5*\frac{3!}{2!}=6*5*3=90, where C^1_6 is # of ways to pick X (the number which shows twice), C^1_5 is # of ways to pick Y (out of 5 numbers left) and \frac{3!}{2!} is # of permutation of 3 letters XXY out of which 2 X's are identical.

P=Favorable/Total=90/6^3=15/36.

Answer: B.

Or: P(XXY)=1*1/6*5/6*3!/2! --> (any, the same one, different one).

Hope it's clear.


Bunuel it specifically says FIRST two show the same number and LAST one shows different. What you did here would be an answer to 'ANY TWO showing same and the REMAINING showing different'. The questions states the order too by mentioning FIRST/LAST. Please clear me if i'm wrong.
Manager
Manager
avatar
Joined: 24 Oct 2012
Posts: 67
WE: Information Technology (Computer Software)
Followers: 0

Kudos [?]: 15 [0], given: 5

Re: Three dice are thrown. What is the probability that the firs [#permalink] New post 22 Jun 2014, 00:00
Bear with me till i get my probability concepts clearer,

In this question, i had solved it this way,
1/1 * 1/6 * 5/6 (first two show the same number, the last one another number) = 5/36.

and there is no choice with this answer. any thoughts on how to go ahead in such problems?
Intern
Intern
avatar
Joined: 23 Mar 2014
Posts: 12
Followers: 0

Kudos [?]: 2 [0], given: 6

GMAT ToolKit User
Re: Three dice are thrown. What is the probability that the firs [#permalink] New post 23 Jun 2014, 11:02
I approached this question the same way as many others:

First dice (can be any number) = 6/6
Second dice (must be the same as first dice) = 1/6
Third dice (any number other than the first 2 dice) = 5/6

Therefore the probability is: 6/6 * 1/6 * 5/6 = 30/216 = 5/36

I'm not understanding why this number needs to be multiplied by 3 either.
Manager
Manager
avatar
Joined: 24 Oct 2012
Posts: 67
WE: Information Technology (Computer Software)
Followers: 0

Kudos [?]: 15 [0], given: 5

Three dice are thrown. What is the probability that the firs [#permalink] New post 23 Jun 2014, 15:39
beef001.both of us are on same page. I donot see need to multiply by 3 either. any experts advice here please.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23407
Followers: 3611

Kudos [?]: 28877 [0], given: 2859

Re: Three dice are thrown. What is the probability that the firs [#permalink] New post 24 Jun 2014, 05:09
Expert's post
beef001 wrote:
I approached this question the same way as many others:

First dice (can be any number) = 6/6
Second dice (must be the same as first dice) = 1/6
Third dice (any number other than the first 2 dice) = 5/6

Therefore the probability is: 6/6 * 1/6 * 5/6 = 30/216 = 5/36

I'm not understanding why this number needs to be multiplied by 3 either.


This is explained in my solution above.

It should be P(XXY)=1*1/6*5/6*3!/2! --> (any, the same one, different one). XXY can occur in three different ways XXY, XYX, or YXX: \frac{3!}{2!}=3 is # of permutation of 3 letters XXY out of which 2 X's are identical.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

HKUST Thread Master
avatar
Joined: 13 Dec 2011
Posts: 43
GPA: 4
Followers: 1

Kudos [?]: 21 [0], given: 96

Re: Three dice are thrown. What is the probability that the firs [#permalink] New post 24 Jun 2014, 11:06
Another way to look at this question: total # of outcomes are 216 (6^3...6 for each dice)...now consider 6 throws in which you have sequences such as 11(2,3,4,5,6), 22(1,3,4,5,6), ..., 66(1,2,3,4,5)...so these are 6*5=30 outcomes....so your result is 30/216 which is 5/36..now multiple it by 3 for 3 possible sequences on 3 dice for the above 30 outcomes.
Intern
Intern
avatar
Joined: 14 May 2014
Posts: 20
Followers: 0

Kudos [?]: 4 [0], given: 54

Re: Three dice are thrown. What is the probability that the firs [#permalink] New post 09 Jul 2014, 10:41
Bunuel wrote:
beef001 wrote:
I approached this question the same way as many others:

First dice (can be any number) = 6/6
Second dice (must be the same as first dice) = 1/6
Third dice (any number other than the first 2 dice) = 5/6

Therefore the probability is: 6/6 * 1/6 * 5/6 = 30/216 = 5/36

I'm not understanding why this number needs to be multiplied by 3 either.


This is explained in my solution above.

It should be P(XXY)=1*1/6*5/6*3!/2! --> (any, the same one, different one). XXY can occur in three different ways XXY, XYX, or YXX: \frac{3!}{2!}=3 is # of permutation of 3 letters XXY out of which 2 X's are identical.



Hi Bunuel,

The confusion seems to be stemming from the question text. The question mentions that 'first two' dice should be same and the last dice should be different. So only XXY should be a success and not XYX or YXX..
So should the correct answer be 6x1x5/216 (Any number x same number x remaining numbers)/216 = 5/36?

Please advise.

Thanks!
Intern
Intern
avatar
Joined: 12 May 2014
Posts: 11
Followers: 0

Kudos [?]: 0 [0], given: 87

Three dice are thrown. What is the probability that the firs [#permalink] New post 15 Jul 2014, 20:26
The question asks about the probability that two of the dice show the same number but the third dice shows a different number.

Total # of outcomes is 6^3;

Favorable outcomes are all possible scenarios of XXY: C^1_6*C^1_5*\frac{3!}{2!}=6*5*3=90, where C^1_6 is # of ways to pick X (the number which shows twice), C^1_5 is # of ways to pick Y (out of 5 numbers left) and \frac{3!}{2!} is # of permutation of 3 letters XXY out of which 2 X's are identical.

P=Favorable/Total=90/6^3=15/36.

Answer: B.

Or: P(XXY)=1*1/6*5/6*3!/2! --> (any, the same one, different one).

Hope it's clear.[/quote]


Hello Bunuel,

Why are we calculating the permutation of the three letters which have been selected ? Shouldn't it be just 6.5.6 = 180 ?
In case of permutation we are also considering the arrangement XXY, XYX, YXX. However, the question clearly states that the first two need to be identical while the last one is different ?

Any help will be appreciated. Thank you
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23407
Followers: 3611

Kudos [?]: 28877 [0], given: 2859

Re: Three dice are thrown. What is the probability that the firs [#permalink] New post 16 Jul 2014, 01:37
Expert's post
parul1591 wrote:
The question asks about the probability that two of the dice show the same number but the third dice shows a different number.

Total # of outcomes is 6^3;

Favorable outcomes are all possible scenarios of XXY: C^1_6*C^1_5*\frac{3!}{2!}=6*5*3=90, where C^1_6 is # of ways to pick X (the number which shows twice), C^1_5 is # of ways to pick Y (out of 5 numbers left) and \frac{3!}{2!} is # of permutation of 3 letters XXY out of which 2 X's are identical.

P=Favorable/Total=90/6^3=15/36.

Answer: B.

Or: P(XXY)=1*1/6*5/6*3!/2! --> (any, the same one, different one).

Hope it's clear.


Hello Bunuel,

Why are we calculating the permutation of the three letters which have been selected ? Shouldn't it be just 6.5.6 = 180 ?
In case of permutation we are also considering the arrangement XXY, XYX, YXX. However, the question clearly states that the first two need to be identical while the last one is different ?

Any help will be appreciated. Thank you
[/quote]

There are no first or second or third die there. Any die can be called first or second when thrown.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Re: Three dice are thrown. What is the probability that the firs   [#permalink] 16 Jul 2014, 01:37
    Similar topics Author Replies Last post
Similar
Topics:
2 Experts publish their posts in the topic If two six-sided dice are thrown, what is the probability Skientist 4 22 Nov 2012, 14:12
20 Experts publish their posts in the topic 4 dices are thrown at the same time. What is the probability roshanaslam 24 27 Dec 2009, 22:21
What is P of two fair dice so that sum of both dice thrown Nsentra 6 01 Sep 2006, 15:20
Three dices are thrown. If score is calculated as sum of duttsit 9 16 Nov 2005, 10:03
When two dice are thrown simultaneously, what is the revital 3 01 Dec 2004, 15:47
Display posts from previous: Sort by

Three dice are thrown. What is the probability that the firs

  Question banks Downloads My Bookmarks Reviews Important topics  


cron

GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.