Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
Tough and tricky 4: addition problem [#permalink]
11 Oct 2009, 16:42
Expert's post
2
This post was BOOKMARKED
00:00
A
B
C
D
E
Difficulty:
(N/A)
Question Stats:
83% (02:08) correct
18% (01:58) wrong based on 98 sessions
Tough and tricky 4: addition problem
AB + CD = AAA, where AB and CD are two-digit numbers and AAA is a three digit number; A, B, C, and D are distinct positive integers. In the addition problem above, what is the value of C?
Re: Tough and tricky 4: addition problem [#permalink]
12 May 2013, 02:04
1
This post received KUDOS
Expert's post
khosru wrote:
AKProdigy87 wrote:
The answer is D: 9.
Logical deduction.
1) Two 2-digit numbers sum to a 3 digit number in the form AAA. Since AB < 100 and CD < 100, AB + CD must be less than 200. So AAA = 111, and A = 1.
2) Now we know, since A is equal to 1, that AB < 20. The only way that AB + CD = 111, if AB < 20, is that if CD > 90. Therefore, C = 9.
sorry I disagree. as 99 +12 =111 0r 12+99=111 C can be 9 or 1, again 76+25=111 or 25+76=111, C can be 2 or 7. so my answer is E.
That's not correct.
AB and CD are two digit integers, their sum can give us only one 3-digit integer of a kind of AAA: 111. So, A=1 --> 1B+CD=111.
C can not be less than 9, because no 2-digit integer with first digit 1 (mean that it's <20) can be added to 2-digit integer less than 90 to have the sum 111 (if CD<90 meaning C<9 CD+1B<111) --> C=9.
Re: Tough and tricky 4: addition problem [#permalink]
12 May 2013, 10:11
Different approach...
A + C + x (Carryover) = AA.. Since all integers are positive C cant be zero...
=> C + x (Carryover) = 10
Now the only carryover that can come from B + D is 1
Hence C = 9 _________________
You've been walking the ocean's edge, holding up your robes to keep them dry. You must dive naked under, and deeper under, a thousand times deeper! - Rumi
Re: Tough and tricky 4: addition problem [#permalink]
13 May 2013, 00:46
1
This post received KUDOS
Bunuel wrote:
Tough and tricky 4: addition problem
AB + CD = AAA, where AB and CD are two-digit numbers and AAA is a three digit number; A, B, C, and D are distinct positive integers. In the addition problem above, what is the value of C?
(A) 1
(B) 3
(C) 7
(D) 9
(E) Cannot be determined
A + C gives A . So c must be either 0 or 10. I the answer choices there is no option with zero. so c must be 10.for c to be 10 we must get a carry over and c MUSt be 9 as the maximum carry over we can get is 1 . so D _________________
"Kudos" will help me a lot!!!!!!Please donate some!!!
Completed Official Quant Review OG - Quant
In Progress Official Verbal Review OG 13th ed MGMAT IR AWA Structure
Yet to do 100 700+ SC questions MR Verbal MR Quant
Re: Tough and tricky 4: addition problem [#permalink]
13 May 2013, 03:11
Bunuel wrote:
Tough and tricky 4: addition problem
AB + CD = AAA, where AB and CD are two-digit numbers and AAA is a three digit number; A, B, C, and D are distinct positive integers. In the addition problem above, what is the value of C?
(A) 1
(B) 3
(C) 7
(D) 9
(E) Cannot be determined
AB<100 and CD<100.So , 20<=AB+CD<200.From 20 to 199 which is in the form of AAA is only one number i.e 111.So A=1,and AB=1B<20 because the tens place has 1.
1B+CD=111,let us consider 1.) B=2 => CD = 99 AB+CD=12+99=111, C=9
2)B=3 => AB=13 =>CD = 98 . C=9
take B=4,5,6,7,8,9 ,we get C= 9 _________________
......................................................................................... Please give me kudos if my posts help.
Re: Tough and tricky 4: addition problem [#permalink]
26 Sep 2013, 05:17
SrinathVangala wrote:
Bunuel wrote:
Tough and tricky 4: addition problem
AB + CD = AAA, where AB and CD are two-digit numbers and AAA is a three digit number; A, B, C, and D are distinct positive integers. In the addition problem above, what is the value of C?
(A) 1
(B) 3
(C) 7
(D) 9
(E) Cannot be determined
A + C gives A . So c must be either 0 or 10. I the answer choices there is no option with zero. so c must be 10.for c to be 10 we must get a carry over and c MUSt be 9 as the maximum carry over we can get is 1 . so D
Correct, also C cannot be zero because the question says they are all positive integers
gmatclubot
Re: Tough and tricky 4: addition problem
[#permalink]
26 Sep 2013, 05:17
As I’m halfway through my second year now, graduation is now rapidly approaching. I’ve neglected this blog in the last year, mainly because I felt I didn’...
Perhaps known best for its men’s basketball team – winners of five national championships, including last year’s – Duke University is also home to an elite full-time MBA...
Hilary Term has only started and we can feel the heat already. The two weeks have been packed with activities and submissions, giving a peek into what will follow...