Find all School-related info fast with the new School-Specific MBA Forum

 It is currently 06 Oct 2015, 13:39

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# triplet combinations puzzle

Author Message
TAGS:
Manager
Joined: 08 Oct 2010
Posts: 213
Location: Uzbekistan
Schools: Johnson, Fuqua, Simon, Mendoza
WE 3: 10
Followers: 9

Kudos [?]: 405 [0], given: 974

triplet combinations puzzle [#permalink]  11 Nov 2010, 03:02
00:00

Difficulty:

45% (medium)

Question Stats:

50% (02:30) correct 50% (01:23) wrong based on 12 sessions
If there are ten positive real numbers n1 < n2 < n3 … < n10, how many triplets of these numbers (n1, n2, n3), (n2, n3, n4) … can be generated such that in each triplet the first number is always less than the second number, and the second number is always less than the third number?

a) 45
b) 90
c) 120
d) 180
e) 150

One solving method is the following:
Three numbers can be selected and arranged out of ten numbers in 10P3 ways=10!/7!=10*9*8. Now this arrangement is restricted to a given condition that first number is always less than the second number, and the second number is always less than the third number. Hence three numbers can be arranged among themselves in 3! ways.

Required number of arrangements=(10*9*8)/(3*2)=120

(the source: Winners’ Guide to GMAT Math – Part II)

Pls, can someone explain me, why 10P3 is divided by 3! ? Inasmuch as I understand the denominator denotes that arragements cases of repeated numbers are to be excluded. Take we this into account then 3! in the denominator has to do with cases such as (n1, n1, n1) or (n2, n2, n2) … But, the question asked in this problem is of a different kind. Then what does 3! mean or has 3! actully to do with triplets with repeated numbers which I could not comprehend?

Many thanks beforhand for detailed explanations !!!
[Reveal] Spoiler: OA
 Kaplan GMAT Prep Discount Codes Knewton GMAT Discount Codes Manhattan GMAT Discount Codes
Math Expert
Joined: 02 Sep 2009
Posts: 29750
Followers: 4894

Kudos [?]: 53359 [2] , given: 8155

Re: triplet combinations puzzle [#permalink]  11 Nov 2010, 03:15
2
KUDOS
Expert's post
feruz77 wrote:
If there are ten positive real numbers n1 < n2 < n3 … < n10, how many triplets of these numbers (n1, n2, n3), (n2, n3, n4) … can be generated such that in each triplet the first number is always less than the second number, and the second number is always less than the third number?

a) 45
b) 90
c) 120
d) 180
e) 150

One solving method is the following:
Three numbers can be selected and arranged out of ten numbers in 10P3 ways=10!/7!=10*9*8. Now this arrangement is restricted to a given condition that first number is always less than the second number, and the second number is always less than the third number. Hence three numbers can be arranged among themselves in 3! ways.

Required number of arrangements=(10*9*8)/(3*2)=120

(the source: Winners’ Guide to GMAT Math – Part II)

Pls, can someone explain me, why 10P3 is divided by 3! ? Inasmuch as I understand the denominator denotes that arragements cases of repeated numbers are to be excluded. Take we this into account then 3! in the denominator has to do with cases such as (n1, n1, n1) or (n2, n2, n2) … But, the question asked in this problem is of a different kind. Then what does 3! mean or has 3! actully to do with triplets with repeated numbers which I could not comprehend?

Many thanks beforhand for detailed explanations !!!

Consider the following approach: we can choose $$C^3_{10}=120$$ different triplets out of 10 distinct numbers. Each triplet (for example: {a,,b,c}) can be arranged in 3! ways ({a,b,c}; {a,c,b}, {b,c,a}, ...), but only one arrangement (namely {a,b,c}) will be in ascending order, so basically $$C^3_{10}=120$$ directly gives the desired # of such triplets.

If you look at the approach you posted: $$\frac{P^3_{10}}{3!}$$ then you can notice that it's basically the same because: $$\frac{P^3_{10}}{3!}=C^3_{10}=120$$

Similar problems:
probability-of-picking-numbers-in-ascending-order-89035.html?hilit=ascending%20probability
probability-for-consecutive-numbers-102191.html?hilit=ascending%20probability#p793614

Hope it's clear.
_________________
Re: triplet combinations puzzle   [#permalink] 11 Nov 2010, 03:15
Similar topics Replies Last post
Similar
Topics:
[Probability] Triplets Adam, Bruce, and Charlie enter a triathlon 0 19 Sep 2015, 17:47
Triplets Roman, Jose and Terry enter a triathlon 0 10 Aug 2015, 07:27
37 Triplets Adam, Bruce, and Charlie enter a triathlon. If 31 16 May 2012, 07:03
Inequality puzzle 8 19 Dec 2011, 06:28
fractions puzzle 2 25 Oct 2010, 01:12
Display posts from previous: Sort by