Two cards are drawn successively from a standard deck of 52 : GMAT Problem Solving (PS)
Check GMAT Club Decision Tracker for the Latest School Decision Releases http://gmatclub.com/AppTrack

 It is currently 17 Jan 2017, 10:10

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# Two cards are drawn successively from a standard deck of 52

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

### Hide Tags

Manager
Joined: 25 Dec 2009
Posts: 99
Followers: 1

Kudos [?]: 154 [0], given: 3

Two cards are drawn successively from a standard deck of 52 [#permalink]

### Show Tags

08 Jan 2010, 16:29
1
This post was
BOOKMARKED
00:00

Difficulty:

(N/A)

Question Stats:

0% (00:00) correct 0% (00:00) wrong based on 1 sessions

### HideShow timer Statistics

Two cards are drawn successively from a standard deck of 52 well-shuffled cards. Find the probability that
a. both are spades
b. the 1st card is a jack and the 2ns is not
c. the 1st card is a 7 and the 2nd is a 5 of spades
d. the 2nd is a face card

good one to clear concepts completely for card questions.
Manager
Joined: 27 Apr 2008
Posts: 190
Followers: 1

Kudos [?]: 77 [0], given: 1

Re: Probability very good question set [#permalink]

### Show Tags

08 Jan 2010, 19:23
a) P(both are spades)=$$\frac{13C2}{52C2}$$
=$$\frac{13*6}{51*26}$$
=$$\frac{1}{27}$$

b) P(1st card jack 2nd card is not) = $$\frac{4C1*48C1}{52C2}$$
= $$\frac{4*48}{51*26}$$
= $$\frac{96}{663}$$

c) P(1st card 7 2nd card 5 of spades) = $$\frac{4C1*1}{52C2}$$
= $$\frac{4*1}{51*26}$$
= $$\frac{4}{663}$$

d) P(2nd card face card) = $$\frac{(first card non face + both cards face)}{52C2}$$
= $$\frac{40*12+12*11}{51*26}$$
= $$\frac{306}{663}$$
= $$\frac{102}{221}$$
Math Expert
Joined: 02 Sep 2009
Posts: 36540
Followers: 7071

Kudos [?]: 93003 [1] , given: 10541

Re: Probability very good question set [#permalink]

### Show Tags

08 Jan 2010, 23:26
1
KUDOS
Expert's post
mrblack wrote:
a) P(both are spades)=$$\frac{13C2}{52C2}$$
=$$\frac{13*6}{51*26}$$
=$$\frac{1}{27}$$

b) P(1st card jack 2nd card is not) = $$\frac{4C1*48C1}{52C2}$$
= $$\frac{4*48}{51*26}$$
= $$\frac{96}{663}$$

c) P(1st card 7 2nd card 5 of spades) = $$\frac{4C1*1}{52C2}$$
= $$\frac{4*1}{51*26}$$
= $$\frac{4}{663}$$

d) P(2nd card face card) = $$\frac{(first card non face + both cards face)}{52C2}$$
= $$\frac{40*12+12*11}{51*26}$$
= $$\frac{306}{663}$$
= $$\frac{102}{221}$$

Two cards are drawn successively from a standard deck of 52 well-shuffled cards. Find the probability that

(A) Both are spades:
$$\frac{13}{52}*\frac{12}{51}$$

(B) The 1st card is a jack and the 2nd is not :
$$\frac{4}{52}*\frac{48}{51}$$

(C) The 1st card is a 7 and the 2nd is a 5 of spades:
$$\frac{4}{52}*\frac{1}{51}$$

(D) The 2nd is a face card:
$$\frac{12}{52}*\frac{11}{51}+\frac{40}{52}*\frac{12}{51}$$

I think the quoted post is not correct as in denominator is 52C2 and there should be 52P2, as order matters in this case: JK is different from KJ.
_________________
Manager
Joined: 27 Apr 2008
Posts: 190
Followers: 1

Kudos [?]: 77 [0], given: 1

Re: Probability very good question set [#permalink]

### Show Tags

09 Jan 2010, 07:15
Why would order matter? For the denominator you just want the # of combinations of getting 2 cards.
Math Expert
Joined: 02 Sep 2009
Posts: 36540
Followers: 7071

Kudos [?]: 93003 [0], given: 10541

Re: Probability very good question set [#permalink]

### Show Tags

09 Jan 2010, 09:44
mrblack wrote:
Why would order matter? For the denominator you just want the # of combinations of getting 2 cards.

You are counting the # of selections of TWO cards in denominator in ALL four cases, but in nominator you are counting # of selections of first card and the second card separately, in all cases but the first. So you got correct answers in the first example and wrong in all other examples.

Consider this:
There are four marbles in the jar: white, black, red and blue. Two marbles are drawn from it. Find the probability that first marble is white and second is red:

Now, according to your solution it would be 1C1*1C1/4C2=1/6, which is not correct.

Correct answer is: as order matters, we need sequence WR only: 1/4*1/3=1/12.

If it were: find the probability of one marble being white and another red, then both WR and RW would be winning scenarios: P=1/4*1/3+1/4*1/3=1/6.
_________________
Manager
Status: Its Wow or Never
Joined: 11 Dec 2009
Posts: 205
Location: India
Concentration: Technology, Strategy
GMAT 1: 670 Q47 V35
GMAT 2: 710 Q48 V40
WE: Information Technology (Computer Software)
Followers: 11

Kudos [?]: 191 [0], given: 7

Re: Probability very good question set [#permalink]

### Show Tags

09 Jan 2010, 10:31
Bunuel wrote:
mrblack wrote:
Why would order matter? For the denominator you just want the # of combinations of getting 2 cards.

You are counting the # of selections of TWO cards in denominator in ALL four cases, but in nominator you are counting # of selections of first card and the second card separately, in all cases but the first. So you got correct answers in the first example and wrong in all other examples.

Consider this:
There are four marbles in the jar: white, black, red and blue. Two marbles are drawn from it. Find the probability that first marble is white and second is red:

Now, according to your solution it would be 1C1*1C1/4C2=1/6, which is not correct.

Correct answer is: as order matters, we need sequence WR only: 1/4*1/3=1/12.

If it were: find the probability of one marble being white and another red, then both WR and RW would be winning scenarios: P=1/4*1/3+1/4*1/3=1/6.

i completely agree with the above example but plz consider below for the question:

the question asks for combinations like 1J,5K or 8Q or for that matter 1st card be a non face card and the 2nd be a face card
hence solution would be: P(Non face card in the 1st draw) * P(face card in the 2nd draw)
={C(40,1)/C(52,1)} * {C(12,1)/C(51,1)}

is it the above case or do we also have to consider the case in which the 1st card is also a face card and 2nd card is also a face card.?
_________________

---------------------------------------------------------------------------------------
If you think you can,you can
If you think you can't,you are right.

Math Expert
Joined: 02 Sep 2009
Posts: 36540
Followers: 7071

Kudos [?]: 93003 [0], given: 10541

Re: Probability very good question set [#permalink]

### Show Tags

09 Jan 2010, 11:04
mojorising800 wrote:
i completely agree with the above example but plz consider below for the question:

the question asks for combinations like 1J,5K or 8Q or for that matter 1st card be a non face card and the 2nd be a face card
hence solution would be: P(Non face card in the 1st draw) * P(face card in the 2nd draw)
={C(40,1)/C(52,1)} * {C(12,1)/C(51,1)}

is it the above case or do we also have to consider the case in which the 1st card is also a face card and 2nd card is also a face card.?

I'm not sure I understood your question... Anyway:

Question is: find the probability second card is face card.

In our original question (#4) we are asked to determine the probability that the second drawn card is face card, it means that second card must be face card, but the first card may or may not be face card.

This can occur in two ways (winning scenarios):
First drawn is face card*Second drawn is face card+First drawn is not face card*Second drawn is face card=F/F+NF/F=12/52*11/51+40/52*12/51. Both F/F and NF/F are winning scenarios for us, as in both cases there is face card as second card.

If it were: find the probability first card is non-face card and second is face card, then only way it can occur is NF/F: NF/F=40/52*12/51 (exactly as you wrote). No need to add to this probability F/F, as it's not a winning scenario for us.

Hope it's clear. Tell me if I answered not the question you were interested in and I'll try to elaborate more.
_________________
Manager
Status: Its Wow or Never
Joined: 11 Dec 2009
Posts: 205
Location: India
Concentration: Technology, Strategy
GMAT 1: 670 Q47 V35
GMAT 2: 710 Q48 V40
WE: Information Technology (Computer Software)
Followers: 11

Kudos [?]: 191 [0], given: 7

Re: Probability very good question set [#permalink]

### Show Tags

09 Jan 2010, 11:19
Bunuel wrote:
mojorising800 wrote:
i completely agree with the above example but plz consider below for the question:

the question asks for combinations like 1J,5K or 8Q or for that matter 1st card be a non face card and the 2nd be a face card
hence solution would be: P(Non face card in the 1st draw) * P(face card in the 2nd draw)
={C(40,1)/C(52,1)} * {C(12,1)/C(51,1)}

is it the above case or do we also have to consider the case in which the 1st card is also a face card and 2nd card is also a face card.?

I'm not sure I understood your question... Anyway:

Question is: find the probability second card is face card.

In our original question (#4) we are asked to determine the probability that the second drawn card is face card, it means that second card must be face card, but the first card may or may not be face card.

This can occur in two ways (winning scenarios):
First drawn is face card*Second drawn is face card+First drawn is not face card*Second drawn is face card=F/F+NF/F=12/52*11/51+40/52*12/51. Both F/F and NF/F are winning scenarios for us, as in both cases there is face card as second card.

If it were: find the probability first card is non-face card and second is face card, then only way it can occur is NF/F: NF/F=40/52*12/51 (exactly as you wrote). No need to add to this probability F/F, as it's not a winning scenario for us.

Hope it's clear. Tell me if I answered not the question you were interested in and I'll try to elaborate more.

yep!!that was my question exactly!!
whether winning scenarios were NF/F only or NF/F+F/F..
doubt cleard!!
_________________

---------------------------------------------------------------------------------------
If you think you can,you can
If you think you can't,you are right.

Manager
Joined: 27 Apr 2008
Posts: 190
Followers: 1

Kudos [?]: 77 [0], given: 1

Re: Probability very good question set [#permalink]

### Show Tags

09 Jan 2010, 17:58
Bunuel wrote:
You are counting the # of selections of TWO cards in denominator in ALL four cases, but in nominator you are counting # of selections of first card and the second card separately, in all cases but the first. So you got correct answers in the first example and wrong in all other examples.

Consider this:
There are four marbles in the jar: white, black, red and blue. Two marbles are drawn from it. Find the probability that first marble is white and second is red:

Now, according to your solution it would be 1C1*1C1/4C2=1/6, which is not correct.

Correct answer is: as order matters, we need sequence WR only: 1/4*1/3=1/12.

If it were: find the probability of one marble being white and another red, then both WR and RW would be winning scenarios: P=1/4*1/3+1/4*1/3=1/6.

Thanks for the explanation Bunuel.
Re: Probability very good question set   [#permalink] 09 Jan 2010, 17:58
Similar topics Replies Last post
Similar
Topics:
6 If 3 cards are selected at random from the deck of 52 cards then What 2 27 Jul 2015, 05:05
If 2 cards are selected at random from the deck of 52 cards then What 1 27 Jul 2015, 04:45
If you are drawing one card from a regular deck of cards (52 cards 4 14 Jun 2015, 01:04
Three cards are drawn from a 52 card deck - no replacement. What is th 1 21 Sep 2010, 01:55
39 Laura has a deck of standard playing cards with 13 of the 52 16 15 Nov 2009, 21:28
Display posts from previous: Sort by

# Two cards are drawn successively from a standard deck of 52

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group and phpBB SEO Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.