Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Two water pumps, working simultaneously at their respective [#permalink]

Show Tags

12 Jul 2013, 07:26

4

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

15% (low)

Question Stats:

80% (02:24) correct
20% (02:01) wrong based on 293 sessions

HideShow timer Statistics

Two water pumps, working simultaneously at their respective constant rates, took exactly four hours to fill a certain swimming pool. If the constant rate of one pump was 1.5 times the constant rate of the other, how many hours would it have taken the faster pump to fill the pool if it had worked alone at it's constant rate?

A. 5 B. 16/3 C. 11/2 D. 6 E. 20/3

Work rate problems are my weakest area. For whatever reason I get mixed up on these problem. Even knowing the answer to this question I can't figure out how it comes out to that answer. Any help would be great, thanks!

Re: Two water pumps, working simultaneously at their respective [#permalink]

Show Tags

12 Jul 2013, 08:25

1

This post received KUDOS

Expert's post

2

This post was BOOKMARKED

kmasonbx wrote:

Two water pumps, working simultaneously at their respective constant rates, took exactly four hours to fill a certain swimming pool. If the constant rate of one pump was 1.5 times the constant rate of the other, how many hours would it have taken the faster pump to fill the pool if it had worked alone at it's constant rate?

A. 5 B. 16/3 C. 11/2 D. 6 E. 20/3

Work rate problems are my weakest area. For whatever reason I get mixed up on these problem. Even knowing the answer to this question I can't figure out how it comes out to that answer. Any help would be great, thanks!

Say the rate of the faster pump is x pool/hour, then the rate of the slower pump would be x/1.5=2x/3 pool/hour.

Since, the combined rate is 1/4 pool/hour, then we have that x+2x/3=1/4 --> x=3/20 pool hour.

The time is reciprocal of the rate, therefore it would take 20/3 hours the faster pump to fill the pool working alone.

Re: Two water pumps, working simultaneously at their respective [#permalink]

Show Tags

12 Jul 2013, 10:01

i am little confused. If i take slower pump as X then 1/X + 1/1.5X = 1/4 which would result X = 20/3 and so faster pump as 10..... where i am going wrong...

Re: Two water pumps, working simultaneously at their respective [#permalink]

Show Tags

12 Jul 2013, 10:07

Expert's post

AMITAGARWAL2 wrote:

i am little confused. If i take slower pump as X then 1/X + 1/1.5X = 1/4 which would result X = 20/3 and so faster pump as 10..... where i am going wrong...

In my solution x is the rate in your solution x is the time.

In your solution x is the time of the faster pump and 1.5x is the time of the slower pump (faster pump needs less time).

Re: Two water pumps, working simultaneously at their respective [#permalink]

Show Tags

08 Sep 2013, 12:25

2

This post received KUDOS

kmasonbx wrote:

Two water pumps, working simultaneously at their respective constant rates, took exactly four hours to fill a certain swimming pool. If the constant rate of one pump was 1.5 times the constant rate of the other, how many hours would it have taken the faster pump to fill the pool if it had worked alone at it's constant rate?

A. 5 B. 16/3 C. 11/2 D. 6 E. 20/3

Work rate problems are my weakest area. For whatever reason I get mixed up on these problem. Even knowing the answer to this question I can't figure out how it comes out to that answer. Any help would be great, thanks!

Re: Two water pumps, working simultaneously at their respective [#permalink]

Show Tags

25 Sep 2013, 08:48

3

This post received KUDOS

Expert's post

Skag55 wrote:

I did, A+B = 4 A = 1.5B

4-B = 1.5B => B = 8/5

Why is this wrong?

We are told that "two water pumps, working simultaneously at their respective constant rates, took exactly four hours to fill a certain swimming pool".

If one pump needs A hours to fill the pool (rate=1/A) and another need B hours to fill the same pool (rate=1/B), then 1/A + 1/B = 1/4.

Solving 1/A + 1/B = 1/4 and A = 1.5B gives A=10 and B=20/3.

Re: Two water pumps, working simultaneously at their respective [#permalink]

Show Tags

15 Sep 2014, 06:40

4

This post received KUDOS

3

This post was BOOKMARKED

AMITAGARWAL2 wrote:

yes it does. Thanks...

Let me elaborate the math so that it's absolutely clear:

Let's calculate the combined rate first:

Rate x Time = Work Rate x 4 = 1 [It takes 4 hours for both the pumps to fill up the pool] Rate = 1/4 [So, 1/4 is the rate for the pumps working together]

Now, the let's assume the rate for the slower pump is x ; so the rate for the faster pump will be 1.5x

According to our previous calculations, Slower pump + faster pump = 1/4 x + 1.5x = 1/4 2.5x = 1/4 x = 1/10 [slower pump's rate]

so, the faster pump's rate is 1/10 x 1.5 = 3/20

Now let's calculate the time it will take for the faster pump

Rate x Time = Work 3/20 x Time = 1 Time = 1 x 20/3 = 20/3 the answer

Re: Two water pumps, working simultaneously at their respective [#permalink]

Show Tags

14 Feb 2015, 14:38

kmasonbx wrote:

Two water pumps, working simultaneously at their respective constant rates, took exactly four hours to fill a certain swimming pool. If the constant rate of one pump was 1.5 times the constant rate of the other, how many hours would it have taken the faster pump to fill the pool if it had worked alone at it's constant rate?

A. 5 B. 16/3 C. 11/2 D. 6 E. 20/3

Work rate problems are my weakest area. For whatever reason I get mixed up on these problem. Even knowing the answer to this question I can't figure out how it comes out to that answer. Any help would be great, thanks!

Re: Two water pumps, working simultaneously at their respective [#permalink]

Show Tags

14 Feb 2015, 21:23

Expert's post

Hi Salvetor,

Yes, your approach is correct. In 'Work' questions, there are usually several different ways to organize the given information, but they all end up involving a ratio at some point.

Re: Two water pumps, working simultaneously at their respective [#permalink]

Show Tags

05 Feb 2016, 19:29

Salvetor wrote:

kmasonbx wrote:

Two water pumps, working simultaneously at their respective constant rates, took exactly four hours to fill a certain swimming pool. If the constant rate of one pump was 1.5 times the constant rate of the other, how many hours would it have taken the faster pump to fill the pool if it had worked alone at it's constant rate?

A. 5 B. 16/3 C. 11/2 D. 6 E. 20/3

Work rate problems are my weakest area. For whatever reason I get mixed up on these problem. Even knowing the answer to this question I can't figure out how it comes out to that answer. Any help would be great, thanks!

Somebody confirm whether this is a right approach to do this type of problem or not. Thanks

I got all of this, and I get the whole logic, even why you have to flip etc. The only part I didn't get is why 1/x + 1/1.5x gives you a numerator (1.5+1)/1.5x rather than (1.5x+x)/1.5x.......I get the denominator, it's just the numerator part which confuses me, seems like I missed a fundamental concept in fractions.

http://blog.ryandumlao.com/wp-content/uploads/2016/05/IMG_20130807_232118.jpg The GMAT is the biggest point of worry for most aspiring applicants, and with good reason. It’s another standardized test when most of us...

I recently returned from attending the London Business School Admits Weekend held last week. Let me just say upfront - for those who are planning to apply for the...