Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

1. When divided by 7, remainder is 3 2. When divided by 4, remainder is 2

Applying Chinese modulus theorem, we get n= 28s+10 ( s is non-negative integer)
There're plenty of values of m ---> there're infinitively many values of n satisfying the two statements --> E it is!

How to apply Chinese modulus theorem:

from 1: n= 3( mod 7) (1)
from 2: n= 2 ( mod 4) (2)

from 2: n= 4v+2 , substitute this to (1), we get: 4v+2= 3(mod 7)
---> 4v= 1( mod 7) ---> v= 2 (mod 7) ( because 2*4= 8 which is divided by 7 has a remainder of 1) --> v= 7s +2 --> n= 4v+2= 4(7s+2)+2 --> n = 28s + 10

1. When divided by 7, remainder is 3 2. When divided by 4, remainder is 2

Applying Chinese modulus theorem, we get n= 28s+10 ( s is non-negative integer) There're plenty of values of m ---> there're infinitively many values of n satisfying the two statements --> E it is!

How to apply Chinese modulus theorem:

from 1: n= 3( mod 7) (1) from 2: n= 2 ( mod 4) (2)

from 2: n= 4v+2 , substitute this to (1), we get: 4v+2= 3(mod 7) ---> 4v= 1( mod 7) ---> v= 2 (mod 7) ( because 2*4= 8 which is divided by 7 has a remainder of 1) --> v= 7s +2 --> n= 4v+2= 4(7s+2)+2 --> n = 28s + 10

Yes it is E....

I find another set of values

when y =9 and x=5 in my solution but your looks more elegant, laxieqv

1. When divided by 7, remainder is 3 2. When divided by 4, remainder is 2

Applying Chinese modulus theorem, we get n= 28s+10 ( s is non-negative integer) There're plenty of values of m ---> there're infinitively many values of n satisfying the two statements --> E it is!

How to apply Chinese modulus theorem:

from 1: n= 3( mod 7) (1) from 2: n= 2 ( mod 4) (2)

from 2: n= 4v+2 , substitute this to (1), we get: 4v+2= 3(mod 7) ---> 4v= 1( mod 7) ---> v= 2 (mod 7) ( because 2*4= 8 which is divided by 7 has a remainder of 1) --> v= 7s +2 --> n= 4v+2= 4(7s+2)+2 --> n = 28s + 10

Yes it is E....

I find another set of values

when y =9 and x=5 in my solution but your looks more elegant, laxieqv

Thanks!

LAXI can u explain how you got this
---> 4v= 1( mod 7) ---> v= 2 (mod 7)

For people who are a little weary of the whole sequence of the Chinese modulus theorem, I hope this will help: You don't have to memorize it.

Basically you write the two conditions:
n=7a+3
n=4b+2

Therefore 4b=7a-1=8a-a-1
b=2a-(a-1)/4
We know that b is an integer so (a-1)/4 must be an integer.
We can write as a-1=4s, or a=4s+1.

Now we know
a=4s+1,
b=2(4s+1)-s=7s+2

You can solve for n here from either a or b, although you don't have to. As long as you know that when s takes different values, you'll have different values for a and b and thus different values of n. In other words you'll know that the solution is not unique and the answer would be E. _________________

Keep on asking, and it will be given you;
keep on seeking, and you will find;
keep on knocking, and it will be opened to you.

Basically you write the two conditions: n=7a+3 n=4b+2

Therefore 4b=7a-1=8a-a-1 b=2a-(a-1)/4 We know that b is an integer so (a-1)/4 must be an integer. We can write as a-1=4s, or a=4s+1.

Now we know a=4s+1, b=2(4s+1)-s=7s+2

You can solve for n here from either a or b, although you don't have to. As long as you know that when s takes different values, you'll have different values for a and b and thus different values of n. In other words you'll know that the solution is not unique and the answer would be E.

The method is neat! And I must say it's the first time I've heard of it. But for people who are stuck, working out with sample numbers present a very quick approach as well.

1) n = 7q1 + 3

n could be 10
n could be 15
etc

Insufficient.

2) n = 4q2 + 1
n could be 5
n could be 9
etc

Insufficient.

Using 1) and 2)
n = 7q1 + 3
n = 4q2 + 1

7q1+3 = 4q2+1
2 = 4q2-7q1

Possible sets: (q1,q2) = (4,2) (11,6) --> means many possible values of n