zz0vlb wrote:

What is the average (arithmetic mean ) of eleven consecutive integers?

(1) The avg of first nine integers is 7

(2) The avg of the last nine integers is 9

Here is a neat little trick for such kind of problems:

Will be better illustrated using a numerical example: take the set {2,3,4,5,6}. Here the common difference (d)=1. The initial average = 4. Now, the averge of the set, after removing the last integer of the set(i.e. 6)will be reduced by exactly

\frac{d}{2} units \to The new Average =

4-\frac{1}{2} = 3.5Again, for the new set of {2,3,4,5} the average is 3.5 . Now, if the last integer is removed, the new average will again be = 3.5-0.5 = 3.

Similarly, for the same set {2,3,4,5,6}, if we remove the first integer from the given set, the average increases by 0.5 and so on and so forth.

Back to the problem:

From F.S 1, we know that the average of the first 9 integers is 7. Thus, the average with the original 11 integers must have been 7+0.5+0.5 = 8. Sufficient.

From F.S 2, we know that the average of the last 9 integers is 9, thus the average with the initial 11 integers must have been 9-0.5-0.5 = 8. Sufficient.

D.

_________________

All that is equal and not-Deep Dive In-equality

Hit and Trial for Integral Solutions