Find all School-related info fast with the new School-Specific MBA Forum

It is currently 18 Dec 2014, 00:31

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

What is the greatest possible area of a triangular region

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
1 KUDOS received
Manager
Manager
avatar
Joined: 18 Oct 2009
Posts: 51
Schools: Kellogg
Followers: 51

Kudos [?]: 407 [1] , given: 3

CAT Tests
What is the greatest possible area of a triangular region [#permalink] New post 01 Nov 2009, 21:12
1
This post received
KUDOS
2
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  55% (hard)

Question Stats:

55% (01:58) correct 45% (01:01) wrong based on 279 sessions
What is the greatest possible area of a triangular region with one vertex at the center of a circle of radius one and the other two vertices on the circle?

A. \frac{\sqrt{3}}{4}

B. \frac{1}{2}

C. \frac{\pi}{4}

D. 1

E. \sqrt{2}
[Reveal] Spoiler: OA

_________________

GMAT Strategies: slingfox-s-gmat-strategies-condensed-96483.html


Last edited by Bunuel on 17 Oct 2013, 07:49, edited 1 time in total.
Added the OA.
Senior Manager
Senior Manager
User avatar
Joined: 18 Aug 2009
Posts: 304
Followers: 3

Kudos [?]: 102 [0], given: 9

Re: Maximum Area of Inscribed Triangle [#permalink] New post 02 Nov 2009, 01:36
gmattokyo wrote:
I'd go with B. 1/2
right triangle. a rough sketch shows that taking one of the sides either left or right seems to be reducing the area.

right triangle area =1/2x1x1 (base=height=radius)=1/2


The logic just striked me... area=1/2xbasexheight.
In this case, if you keep the base is constant=radius. Height is at its maximum when it is right triangle.

is that the OA?
Director
Director
User avatar
Joined: 25 Oct 2008
Posts: 609
Location: Kolkata,India
Followers: 9

Kudos [?]: 228 [0], given: 100

Re: Maximum Area of Inscribed Triangle [#permalink] New post 03 Nov 2009, 16:58
So I came across this question in my test and got it wrong..I assumed the equilateral triangle has the greatest area and marked root3/4 :(
Now i see the logic..any triangle drawn by the above specifications will have two legs as the radius..we have to maximise the area so the third leg should be the largest.

However,is this some kind of a theoram/fact that we should be knowing?That to get the largest area of a triangle,the triangle has to be a right angle and not an equilateral one?
_________________

countdown-beginshas-ended-85483-40.html#p649902

VP
VP
avatar
Joined: 05 Mar 2008
Posts: 1474
Followers: 11

Kudos [?]: 209 [0], given: 31

Re: Maximum Area of Inscribed Triangle [#permalink] New post 03 Nov 2009, 17:53
tejal777 wrote:
So I came across this question in my test and got it wrong..I assumed the equilateral triangle has the greatest area and marked root3/4 :(
Now i see the logic..any triangle drawn by the above specifications will have two legs as the radius..we have to maximise the area so the third leg should be the largest.

However,is this some kind of a theoram/fact that we should be knowing?That to get the largest area of a triangle,the triangle has to be a right angle and not an equilateral one?


Yes, if the bases are the same. In this case 1 would be the base (radius) and a 45-45-90 maximizes area

Try using any number for the base, for example 4

45-45-90 = 1/2(4)(4) = 8

60-60-60 = 1/2(4)(2 sqrt(3)) = 4 sqrt(3)
Expert Post
3 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 24572
Followers: 3800

Kudos [?]: 32751 [3] , given: 3556

What is the greatest possible area of a triangular region [#permalink] New post 06 Dec 2009, 11:47
3
This post received
KUDOS
Expert's post
2
This post was
BOOKMARKED
What is the greatest possible area of a triangular region with one vertex at the center of a circle of radius one and the other two vertices on the circle?

A. \frac{\sqrt{3}}{4}

B. \frac{1}{2}

C. \frac{\pi}{4}

D. 1

E. \sqrt{2}

Clearly two sides of the triangle will be equal to the radius of 1.

Now, fix one of the sides horizontally and consider it to be the base of the triangle.

area=\frac{1}{2}*base*height=\frac{1}{2}*1*height=\frac{height}{2}.

So, to maximize the area we need to maximize the height. If you visualize it, you'll see that the height will be maximized when it's also equals to the radius thus coincides with the second side (just rotate the other side to see). which means to maximize the area we should have the right triangle with right angle at the center.

area=\frac{1}{2}*1*1=\frac{1}{2}.

Answer: B.

You can also refer to other solutions:
triangular-region-65317.html
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

10 KUDOS received
Manager
Manager
User avatar
Joined: 29 Oct 2009
Posts: 211
GMAT 1: 750 Q50 V42
Followers: 69

Kudos [?]: 708 [10] , given: 18

Re: GMAT Prep Triangle/Circle [#permalink] New post 06 Dec 2009, 12:09
10
This post received
KUDOS
2
This post was
BOOKMARKED
Adding onto what Bunuel said, there is an important property about isosceles triangles that will help you understand and solve this question.

First though, let us see how this particular triangle must be isosceles.

If one vertex is at the centre of the circle and the other two are on the diameter, then the triangle must be isosceles since two of its sides will be = radius of circle = 1.

Now for an isosceles triangle, the area will be maximum when it is a right angled triangle. One way of proving this is through differentiation. However, since that is well out of GMAT scope, I will provide you with an easier approach.

An isosceles triangle can be considered as one half of a rhombus with side lengths 'b'. Now a rhombus of greatest area is a square, half of which is a right angled isosceles triangle. Thus for an isosceles triangle, the area will be greatest when it is a right angled triangle.

[Note to Bunuel : I think this one might have been missed in the post on triangles?]

Now for the right angled triangle in our case, b = 1 and h = 1

Thus area of triangle = \frac{1}{2}*b*h = \frac{1}{2}

Answer : B

Note : I believe the mistake you might have made is considered the base to be = 2 (or the diameter of the circle) and height to be 1. This can only be possible if all three vertices lie on the circle not when one is at the centre.
_________________

Click below to check out some great tips and tricks to help you deal with problems on Remainders!
compilation-of-tips-and-tricks-to-deal-with-remainders-86714.html#p651942

Word Problems Made Easy!
1) Translating the English to Math : word-problems-made-easy-87346.html
2) 'Work' Problems Made Easy : work-word-problems-made-easy-87357.html
3) 'Distance/Speed/Time' Word Problems Made Easy : distance-speed-time-word-problems-made-easy-87481.html

Expert Post
3 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 24572
Followers: 3800

Kudos [?]: 32751 [3] , given: 3556

Re: GMAT Prep Triangle/Circle [#permalink] New post 06 Dec 2009, 13:15
3
This post received
KUDOS
Expert's post
sriharimurthy wrote:
[Note to Bunuel : I think this one might have been missed in the post on triangles?]


This is a useful property, thank you. +1.

For an isosceles triangle with given length of equal sides right triangle (included angle) has the largest area.

And vise-versa:

Right triangle with a given hypotenuse has the largest area when it's an isosceles triangle.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

2 KUDOS received
Manager
Manager
avatar
Joined: 09 May 2009
Posts: 204
Followers: 1

Kudos [?]: 98 [2] , given: 13

Re: GMAT Prep Triangle/Circle [#permalink] New post 10 Dec 2009, 19:52
2
This post received
KUDOS
arjunrampal wrote:
Has anyone got a diagram of the trangle in circle for this question? I'm unable to visualize the diagram from the question


fig attached
Attachments

circle.doc [23.5 KiB]
Downloaded 190 times

To download please login or register as a user


_________________

GMAT is not a game for losers , and the moment u decide to appear for it u are no more a loser........ITS A BRAIN GAME

Senior Manager
Senior Manager
avatar
Joined: 30 Aug 2009
Posts: 290
Location: India
Concentration: General Management
Followers: 3

Kudos [?]: 100 [0], given: 5

Re: Maximum Area - No clues [#permalink] New post 14 Mar 2010, 01:57
mustdoit wrote:
What is the greatest possible area of a triangular region with one vertex at the center of a circle of radius 1 and the other two vertices on the circle?

a. rt3/4
b. 1/2
c. Pi/4
d. 1
e. rt2


OA:
[Reveal] Spoiler:
B


let the vertex at Centre be A and B and C are vertices of trianle on the circle
so length of side AB and AC will be equal to radius of circle =1.In this case the maximum area will be obtained for a right angled isosceles traiangle

1/2* AB* AC = 1/2 *1*1 = 1/2
Senior Manager
Senior Manager
User avatar
Joined: 13 Dec 2009
Posts: 263
Followers: 10

Kudos [?]: 119 [0], given: 13

Reviews Badge
Re: Maximum Area - No clues [#permalink] New post 14 Mar 2010, 02:20
mustdoit wrote:
What is the greatest possible area of a triangular region with one vertex at the center of a circle of radius 1 and the other two vertices on the circle?

a. rt3/4
b. 1/2
c. Pi/4
d. 1
e. rt2


OA:
[Reveal] Spoiler:
B


Let say b is the third side's length and a is the equal sides' lenght.
then the area of triangle by hero's formula will be b * sqrt(4 a^2 - b^2)/4
putting value of a
=> Area = b * sqrt(4 - b^2)/4
now to get maximum value of Area we have to take derivative of Area in terms of the third side.
For maximum Area its square will also be maximum, that's why squaring both the sides
=> Area^2 = b^2 * (4 - b^2)/16
=> Taking derivative both the sides
=> d(Area^2)/db = (8b-4b^3)/16
equate RHS to 0 to get value of b for which Area is maximum
(8b - 4b^3)/16 = 0
=>2b-b^3 = 0
=>b (2-b^2) = 0
b = 0, |b| = sqrt 2
now b cannot be negative so
b = 0, b = sqrt 2
for these two values sqrt 2 will give the maximum area and put this value in
Area = b * sqrt(4 - b^2)/4

Area = (sqrt 2 * sqrt 2) / 4 = 1/2 hence b is the answer.
_________________

My debrief: done-and-dusted-730-q49-v40

1 KUDOS received
Manager
Manager
avatar
Joined: 21 Jan 2010
Posts: 233
Followers: 4

Kudos [?]: 57 [1] , given: 38

Re: Maximum Area - No clues [#permalink] New post 14 Mar 2010, 08:22
1
This post received
KUDOS
Can I see it this way?

If you know what is function sin, it has a range from -1 to 1:

Since area of triangle = 1/2 x (side a x side b x sin C), where C is the angle in between side a and b.
The area would be at its maximum when C equals 90 degrees, i.e. sin C = 1.

In this case, we can take side a and side b the radii and C 90 degrees:
1/2 x 1 x 1 x 1 = 1/2

Hope this helps.
Manager
Manager
avatar
Joined: 08 Oct 2009
Posts: 64
Location: Denver, CO
WE 1: IT Business Analyst-Building Materials Industry
Followers: 1

Kudos [?]: 13 [0], given: 4

Re: Maximum Area of Inscribed Triangle [#permalink] New post 06 Apr 2010, 16:49
I got this right on my test, does my thought process make sense?

I know that for a set perimeter of a quadrilateral a square will maximize area, so if you have 16 feet of fence to enclose a garden and want to maximize the area of the garden you would build a square fence around the garden.

EX: Perimeter= 16 Area of square=16
Ex: Perimeter of a rectangle with width of 2 and length of 6=16 Area of the rectangle= 12

So for this problem I thought that a 45-45-90 triangle is half of a square therefore this triangle must maxmize the area with given base.

Sorry if this is confusing, but is this mathmatically correct?
Senior Manager
Senior Manager
User avatar
Joined: 19 Nov 2009
Posts: 329
Followers: 4

Kudos [?]: 62 [0], given: 44

Re: GMAT PREP (PS) [#permalink] New post 06 May 2010, 12:13
With one of the vertices at the centre, the two sides of the traingle could be perpendicular to each other (2 radii) and the third side joining the two vertices will be the hypotenuse. Hence, the area will be 1/2 * 1 *1 = 1/2 !
_________________

"Success is going from failure to failure without a loss of enthusiam." - Winston Churchill

As vs Like - Check this link : http://www.grammar-quizzes.com/like-as.html.

Retired Moderator
User avatar
Joined: 02 Sep 2010
Posts: 807
Location: London
Followers: 80

Kudos [?]: 533 [0], given: 25

GMAT ToolKit User Reviews Badge
Re: PS question: need help [#permalink] New post 23 Oct 2010, 02:38
satishreddy wrote:
ps question

Trignometry based solution

Note that such a triangle is always isosceles, with two sides=1 (the radius of the circle).
Let the third side be b (the base) and the height be h.
If you imagine the angle subtended at the centre by the thrid side, and let this angle be x.

The base would be given by 2*sin(x/2) and the height by cos(x/2); where x is a number between 0 and 180

The area is therefore, sin(z)*cos(z), where z is between 0 and 90.
We can simplify this further as sin(z)*\sqrt{1-sin^2(z)}, with z between 0 and 90, for which range sin(z) is between 0 and 1.

So the answer is maxima of the function f(y)=y*\sqrt{1-y^2} with y between 0 and 1.
This is equivalent to finding the point which will maximize the square of this function g(y)=y^2(1-y^2) which is easy to do taking the first derivative, g'(y)=2y-4y^3, which gives the point as y=\frac{1}{\sqrt{2}}.

If we plug it into f(y), the answer is area = 0.5 .. Hence answer is (b)

Basically the solution above proves that for an isosceles triangle, when the length of the equal sides is fixed, the area is maximum when the triangle is a right angled triangle (y=sin(x/2)=\frac{1}{\sqrt{2}} means x=90). This is a result you will most liekly see being quoted on alternate solutions.
_________________

Math write-ups
1) Algebra-101 2) Sequences 3) Set combinatorics 4) 3-D geometry

My GMAT story

Expert Post
1 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 5026
Location: Pune, India
Followers: 1207

Kudos [?]: 5807 [1] , given: 168

Re: Maximum Area - No clues [#permalink] New post 23 Oct 2010, 05:36
1
This post received
KUDOS
Expert's post
Interesting Question!
As CalvinHobbes suggested, the easiest way to deal with it might be through the area formula:
Area = (1/2)abSinQ
a and b are the lengths of two sides of the triangle and Q is the included angle between sides a and b.
(It is anyway good to remember this area formula if you are a little comfortable with trigonometry because it could turn your otherwise tricky question into a simple application.)

If we want to maximize area, we need to maximize Sin Q since a and b are already 1.
Maximum value of Sin Q is 1 which happens when Q = 90 degrees.

Therefore, maximum area of the triangle will be (1/2).1.1.1 = (1/2)
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Director
Director
avatar
Joined: 01 Feb 2011
Posts: 766
Followers: 14

Kudos [?]: 63 [0], given: 42

CAT Tests
Re: Maximum Area - No clues [#permalink] New post 11 Jun 2011, 16:59
Area is maximum in an isosceles triangle when angle between two same sides is 90.

Maximum area = 1/2 (r)(r) = (1/2) (r^2) = 1/2

Answer is B.
Intern
Intern
avatar
Joined: 05 Aug 2012
Posts: 16
Location: United States (CO)
Concentration: Finance, Economics
GMAT Date: 01-15-2014
GPA: 2.62
WE: Research (Investment Banking)
Followers: 0

Kudos [?]: 6 [0], given: 8

Re: What is the greatest possible area of a triangular region [#permalink] New post 17 Oct 2013, 17:25
I solved the question the following way..

I gathered the greatest possible triangle has a 90 degree angle where 2 sides meet (each length 1, the radius)
This means the 3rd side will be \sqrt{2} (90/45/45 rule)

It's base will be \sqrt{2} and its height will be \sqrt{2}/2

So base times height over 2 looks as such-

\sqrt{2}*\sqrt{2}/2 all over 2

which yields 1/2.

am I getting the right answer the wrong way?
Expert Post
1 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 5026
Location: Pune, India
Followers: 1207

Kudos [?]: 5807 [1] , given: 168

Re: What is the greatest possible area of a triangular region [#permalink] New post 17 Oct 2013, 19:56
1
This post received
KUDOS
Expert's post
bscharm wrote:
I solved the question the following way..

I gathered the greatest possible triangle has a 90 degree angle where 2 sides meet (each length 1, the radius)
This means the 3rd side will be \sqrt{2} (90/45/45 rule)

It's base will be \sqrt{2} and its height will be \sqrt{2}/2

So base times height over 2 looks as such-

\sqrt{2}*\sqrt{2}/2 all over 2

which yields 1/2.

am I getting the right answer the wrong way?


I think you complicated the question for no reason even though your answer and method, both are correct (though not optimum). The most important part of the question is realizing that the triangle will be a right triangle. Once you did that, you know the two perpendicular sides of the triangle are 1 and 1 (the radii of the circle). The two perpendicular sides can very well be the base and the height. So area = (1/2)*1*1 = 1/2

In fact, this is used sometimes to find the altitude of the right triangle from 90 degree angle to hypotenuse. You equate area obtained from using the perpendicular side lengths with area obtained using hypotenuse. In this question, that will be

(1/2)*1*1 = (1/2)*\sqrt{2}*Altitude
You get altitude from this.

How to realize it will be a right triangle without knowing the property:
You can do that by imagining the situation in which the area will be minimum. When the two sides overlap (i.e the angle between them is 0), the area will be 0 i.e. there will be no triangle. As you keep moving the sides away from each other, the area will increase till it eventually becomes 0 again when the angle between them is 180. So the maximum area between them will be when the angle between the sides is 90.
Attachment:
Ques3.jpg
Ques3.jpg [ 22.49 KiB | Viewed 602 times ]

_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Booth Thread Master
User avatar
Joined: 06 Sep 2013
Posts: 1991
Concentration: Finance
GMAT 1: 710 Q48 V39
Followers: 20

Kudos [?]: 247 [0], given: 351

GMAT ToolKit User
Re: GMAT Prep Triangle/Circle [#permalink] New post 25 Apr 2014, 04:51
Bunuel wrote:
What is the greatest possible area of a triangular region with one vertex at the center of a circle of radius one and the other two vertices on the circle?

Clearly two sides of the triangle will be equal to the radius of 1.

Now, fix one of the sides horizontally and consider it to be the base of the triangle.

area=\frac{1}{2}*base*height=\frac{1}{2}*1*height=\frac{height}{2}.

So, to maximize the area we need to maximize the height. If you visualize it, you'll see that the height will be maximized when it's also equals to the radius thus coincides with the second side (just rotate the other side to see). which means to maximize the area we should have the right triangle with right angle at the center.

area=\frac{1}{2}*1*1=\frac{1}{2}.

Answer: B.

You can also refer to other solutions:
triangular-region-65317.html


Having some trouble figuring out why right isosceles triangle has greater area than equilateral triangle
Anyone would mind clarifying this?

Cheers!
J :)
Expert Post
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 5026
Location: Pune, India
Followers: 1207

Kudos [?]: 5807 [0], given: 168

Re: GMAT Prep Triangle/Circle [#permalink] New post 27 Apr 2014, 21:39
Expert's post
jlgdr wrote:
Bunuel wrote:
What is the greatest possible area of a triangular region with one vertex at the center of a circle of radius one and the other two vertices on the circle?

Clearly two sides of the triangle will be equal to the radius of 1.

Now, fix one of the sides horizontally and consider it to be the base of the triangle.

area=\frac{1}{2}*base*height=\frac{1}{2}*1*height=\frac{height}{2}.

So, to maximize the area we need to maximize the height. If you visualize it, you'll see that the height will be maximized when it's also equals to the radius thus coincides with the second side (just rotate the other side to see). which means to maximize the area we should have the right triangle with right angle at the center.

area=\frac{1}{2}*1*1=\frac{1}{2}.

Answer: B.

You can also refer to other solutions:
triangular-region-65317.html


Having some trouble figuring out why right isosceles triangle has greater area than equilateral triangle
Anyone would mind clarifying this?

Cheers!
J :)


Couple of ways to think about it:

Method 1:
Say base of a triangle is 1.
Area = (1/2)*base*height = (1/2)*height

Say, another side has a fixed length of 1. You start with the first figure on top left when two sides are 1 and third side is very small and keep rotating the side of length 1. The altitude keeps increasing. You get an equilateral triangle whose altitude is \sqrt{3}/2 * 1 which is less than 1. Then you still keep rotating till you get the altitude as 1 (the other side). Now altitude is max so area is max. This is a right triangle.
When you rotate further still, the altitude will start decreasing again.
Attachment:
Ques3.jpg
Ques3.jpg [ 25.95 KiB | Viewed 428 times ]


Method 2:

Given in my post above.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Re: GMAT Prep Triangle/Circle   [#permalink] 27 Apr 2014, 21:39
    Similar topics Author Replies Last post
Similar
Topics:
What is the greatest possible area of a triangular region scorpio7 6 13 Jun 2009, 14:18
What is the greatest possible area of a triangular region baileyf16 4 29 Oct 2007, 16:57
What is the greatest possible area of triangular region with nitinneha 3 04 Apr 2007, 15:52
What is the greatest possible area of a triangular region SimaQ 6 01 Nov 2006, 10:08
What is the greatest possible area of a triangular region mrmikec 9 16 Jun 2006, 17:10
Display posts from previous: Sort by

What is the greatest possible area of a triangular region

  Question banks Downloads My Bookmarks Reviews Important topics  

Go to page    1   2    Next  [ 21 posts ] 



GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.