Find all School-related info fast with the new School-Specific MBA Forum

It is currently 31 Oct 2014, 03:20

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

What is the greatest value of m such that 4^m is a factor of

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
2 KUDOS received
Director
Director
User avatar
Joined: 07 Jun 2004
Posts: 618
Location: PA
Followers: 3

Kudos [?]: 191 [2] , given: 22

What is the greatest value of m such that 4^m is a factor of [#permalink] New post 03 Dec 2010, 17:12
2
This post received
KUDOS
8
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  25% (medium)

Question Stats:

65% (01:50) correct 35% (01:10) wrong based on 471 sessions
What is the greatest value of m such that 4^m is a factor of 30! ?

(A) 13
(B) 12
(C) 11
(D) 7
(E) 6

is there an easier way to do this other than brute force
[Reveal] Spoiler: OA

_________________

If the Q jogged your mind do Kudos me : )

Expert Post
13 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4887
Location: Pune, India
Followers: 1162

Kudos [?]: 5439 [13] , given: 165

Re: Facorial PS [#permalink] New post 03 Dec 2010, 18:55
13
This post received
KUDOS
Expert's post
Ok.
So lets take a simple example first:

What is the greatest value of m such that 2^m is a factor of 10!

We need to find the number of 2s in 10!
Method:
Step 1: 10/2 = 5
Step 2: 5/2 = 2
Step 3: 2/2 = 1
Step 4: Add all: 5 + 2 + 1 = 8 (Answer)

Logic:
10! = 1*2*3*4*5*6*7*8*9*10
Every alternate number will have a 2. Out of 10 numbers, 5 numbers will have a 2. (Hence Step 1: 10/2 = 5)
These 5 numbers are 2, 4, 6, 8, 10
Now out of these 5 numbers, every alternate number will have another 2 since it will be a multiple of 4 (Hence Step 2: 5/2 = 2)
These 2 numbers will be 4 and 8.
Out of these 2 numbers, every alternate number will have yet another 2 because it will be a multiple of 8. (Hence Step 3: 2/2 = 1)
This single number is 8.

Now all 2s are accounted for. Just add them 5 + 2 + 1 = 8 (Hence Step 4)
These are the number of 2s in 10!.
Similarly, you can find maximum power of any prime number in any factorial.
If the question says 4^m, then just find the number of 2s and half it.
If the question says 6^m, then find the number of 3s and that will be your answer (because to make a 6, you need a 3 and a 2. You have definitely more 2s in 10! than 3s. So number of 3s is your limiting condition.)
Let's take this example: Maximum power of 6 in 40!.
40/3 = 13
13/3 = 4
4/3 = 1
Total number of 3s = 13 + 4 + 1 = 18
40/2 = 20
20/2 = 10
10/2 = 5
5/2 = 2
2/2 = 1
Total number of 2s in 40! is 20+10 + 5 + 2 + 1 = 38
Definitely, number of 3s are less so we can make only 18 6s in spite of having many more 2s.
Usually, the greatest prime number will be the limiting condition.
And if you are still with me, then tell me, what happens if I ask for the greatest power of 12 in 40!?
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Expert Post
7 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23505
Followers: 3636

Kudos [?]: 29404 [7] , given: 2932

Re: Facorial PS [#permalink] New post 04 Dec 2010, 01:42
7
This post received
KUDOS
Expert's post
3
This post was
BOOKMARKED
rxs0005 wrote:
What is the greatest value of m such that 4m is a factor of 30! ?

(A) 13
(B) 12
(C) 11
(D) 7
(E) 6

is there an easier way to do this other than brute force


Finding the number of powers of a prime number k, in the n!.

The formula is:
\frac{n}{k}+\frac{n}{k^2}+\frac{n}{k^3} ... till n>k^x

For example: what is the power of 2 in 25! (the highest value of m for which 2^m is a factor of 25!)
\frac{25}{2}+\frac{25}{4}+\frac{25}{8}+\frac{25}{16}=12+6+3+1=22. So the highest power of 2 in 25! is 22: 2^{22}*k=25!, where k is the product of other multiple of 25!.

Check for more: everything-about-factorials-on-the-gmat-85592.html and math-number-theory-88376.html

Back to the original question:
What is the greatest value of m such that 4^m is a factor of 30! ?
A. 13
B. 12
C. 11
D. 7
E. 6

First of all it should be 4^m instead of 4m.

Now, 4^m=2^{2m}, so we should check the highest power of 2 in 30!: \frac{30}{2}+\frac{30}{4}+\frac{30}{8}+\frac{30}{16}=15+7+3+1=26. So the highest power of 2 in 30! is 26 --> 2m=26 --> m=13.

Answer: A.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Expert Post
6 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4887
Location: Pune, India
Followers: 1162

Kudos [?]: 5439 [6] , given: 165

Re: Facorial PS [#permalink] New post 04 Dec 2010, 05:49
6
This post received
KUDOS
Expert's post
whiplash2411 wrote:
Would that also be 18? Since 12 is 6*2 and 6 would be the limiting factor? I feel like I might be missing something

Also kudos! Your explanation was fantastic.

Posted from my mobile device Image


Yes, greatest power of 12 in 40! will also be 18 because
12= 3*2^2
Total number of 3s = 13 + 4 + 1 = 18 (as shown above)
Total number of 2s in 40! is 20+10 + 5 + 2 + 1 = 38 (as shown above)
So you can make 19 4s. The limiting factor is still 3.
So rxs0005, bhushan288 and whiplash2411, you all had correct answers.

The interesting thing is the maximum power of 12 in 30!
30/2 = 15
15/2 = 7
7/2 = 3
3/2 = 1
Total 2s = 15 + 7 + 3 + 1 = 26 So you can make 13 4s
30/3 = 10
10/3 = 3
3/3 = 1
Total 3s = 10 + 3 + 1 = 14!

The maximum power of 12 is 13, not 14.
Here, the limiting factor is the number of 4s (i.e. half of the number of 2s). Of course the number of 2s is more but that number gets divided by 2 to make 4s. It becomes the limiting factor.
In such cases, you will need to check for both 2 and 3.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Expert Post
5 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4887
Location: Pune, India
Followers: 1162

Kudos [?]: 5439 [5] , given: 165

Re: Facorial PS [#permalink] New post 03 Dec 2010, 18:33
5
This post received
KUDOS
Expert's post
rxs0005 wrote:
What is the greatest value of m such that 4m is a factor of 30! ?

(A) 13
(B) 12
(C) 11
(D) 7
(E) 6

is there an easier way to do this other than brute force


I think the question is
What is the greatest value of m such that 4^m is a factor of 30! ?

The easiest way to do this is the following:
Divide 30 by 2. You get 15
Divide 15 by 2. You get 7. (Ignore remainder)
Divide 7 by 2. You get 3.
Divide 3 by 2. You get 1.
Add 15+7+3+1 = 26
Since greatest power of 2 in 30! is 26, greatest power of 4 in 30! will be 13.
I will explain the logic behind the process in a while. (It will take some effort to formulate.)
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Expert Post
4 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23505
Followers: 3636

Kudos [?]: 29404 [4] , given: 2932

Re: Facorial PS [#permalink] New post 04 Dec 2010, 06:11
4
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
Examples about the same concept from: everything-about-factorials-on-the-gmat-85592-20.html

Highest power of 12 in 18!:
Suppose we have the number 18! and we are asked to to determine the power of 12 in this number. Which means to determine the highest value of x in 18!=12^x*a, where a is the product of other multiples of 18!.

12=2^2*3, so we should calculate how many 2-s and 3-s are in 18!.

Calculating 2-s: \frac{18}{2}+\frac{18}{2^2}+\frac{18}{2^3}+\frac{18}{2^4}=9+4+2+1=16. So the power of 2 (the highest power) in prime factorization of 18! is 16.

Calculating 3-s: \frac{18}{3}+\frac{18}{3^2}=6+2=8. So the power of 3 (the highest power) in prime factorization of 18! is 8.

Now as 12=2^2*3 we need twice as many 2-s as 3-s. 18!=2^{16}*3^8*a=(2^2)^8*3^8*a=(2^2*3)^8*a=12^8*a. So 18!=12^8*a --> x=8.

The highest power of 900 in 50!:

50!=900^xa=(2^2*3^2*5^2)^x*a, where x is the highest possible value of 900 and a is the product of other multiples of 50!.

Find the highest power of 2: \frac{50}{2}+\frac{50}{4}+\frac{50}{8}+\frac{50}{16}+\frac{50}{32}=25+12+6+3+1=47 --> 2^{47};

Find the power of 3: \frac{50}{3}+\frac{50}{9}+\frac{50}{27}=16+5+1=22 --> 3^{22};

Find the power of 5: \frac{50}{5}+\frac{50}{25}=10+2=12 --> 5^{12};

So, 50!=2^{47}*3^{22}*5^{12}*b=(2^2*3^2*5^2)^6*(2^{35}*3^{10})*b=900^{6}*(2^{35}*3^{10})*b, where b is the product of other multiples of 50!. So x=6.

Hope it helps.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23505
Followers: 3636

Kudos [?]: 29404 [1] , given: 2932

Re: Facorial PS [#permalink] New post 25 Jun 2012, 04:42
1
This post received
KUDOS
Expert's post
kashishh wrote:
Bunuel wrote:
rxs0005 wrote:
What is the greatest value of m such that 4m is a factor of 30! ?

(A) 13
(B) 12
(C) 11
(D) 7
(E) 6

is there an easier way to do this other than brute force


Finding the number of powers of a prime number k, in the n!.

The formula is:
\frac{n}{k}+\frac{n}{k^2}+\frac{n}{k^3} ... till n>k^x

For example: what is the power of 2 in 25! (the highest value of m for which 2^m is a factor of 25!)
\frac{25}{2}+\frac{25}{4}+\frac{25}{8}+\frac{25}{16}=12+6+3+1=22. So the highest power of 2 in 25! is 22: 2^{22}*k=25!, where k is the product of other multiple of 25!.

Check for more: everything-about-factorials-on-the-gmat-85592.html and math-number-theory-88376.html

Back to the original question:
What is the greatest value of m such that 4^m is a factor of 30! ?
A. 13
B. 12
C. 11
D. 7
E. 6

First of all it should be 4^m instead of 4m.

Now, 4^m=2^{2m}, so we should check the highest power of 2 in 30!: \frac{30}{2}+\frac{30}{4}+\frac{30}{8}+\frac{30}{16}=15+7+3+1=26. So the highest power of 2 in 30! is 26 --> 2m=26 --> m=13.

Answer: A.

Hope it's clear.


Dear Bunuel,

is this formulae is applied with primes ( 2, 3 ..) only?
the doubt is because you reduced 4 into 2..


You can apply this formula to ANY prime. I used the base of 2 instead of 4 since 4 is not a prime.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Expert Post
Ms. Big Fat Panda
Ms. Big Fat Panda
User avatar
Status: Three Down.
Joined: 09 Jun 2010
Posts: 1882
Concentration: Social Entrepreneurship, Organizational Behavior
Followers: 350

Kudos [?]: 1416 [0], given: 196

GMAT ToolKit User
Re: Facorial PS [#permalink] New post 03 Dec 2010, 17:20
Expert's post
Pretty simple, really. Answer is A.

If m = 13, then 4m = 52, which is 26x2, both of which are included in 30!

Since 13 is the largest number here, its the answer.
Expert Post
Ms. Big Fat Panda
Ms. Big Fat Panda
User avatar
Status: Three Down.
Joined: 09 Jun 2010
Posts: 1882
Concentration: Social Entrepreneurship, Organizational Behavior
Followers: 350

Kudos [?]: 1416 [0], given: 196

GMAT ToolKit User
Re: Facorial PS [#permalink] New post 03 Dec 2010, 19:05
Expert's post
Would that also be 18? Since 12 is 6*2 and 6 would be the limiting factor? I feel like I might be missing something

Also kudos! Your explanation was fantastic.

Posted from my mobile device Image
Intern
Intern
avatar
Joined: 21 Jun 2010
Posts: 5
Followers: 0

Kudos [?]: 6 [0], given: 1

Re: Facorial PS [#permalink] New post 04 Dec 2010, 00:55
Will it be 18 bcoz greatest prime number is 3..
40/3 13
13/3 4
4/3 1
so total 13+4+1 =18..
Director
Director
User avatar
Joined: 07 Jun 2004
Posts: 618
Location: PA
Followers: 3

Kudos [?]: 191 [0], given: 22

Re: Facorial PS [#permalink] New post 04 Dec 2010, 01:06
thanks for the explanation will it be 18 ?
_________________

If the Q jogged your mind do Kudos me : )

Senior Manager
Senior Manager
User avatar
Joined: 08 Nov 2010
Posts: 422
WE 1: Business Development
Followers: 7

Kudos [?]: 35 [0], given: 161

GMAT ToolKit User
Re: Facorial PS [#permalink] New post 11 Dec 2010, 13:54
VeritasPrepKarishma, great work explaining this one.

Thanks.
_________________

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Senior Manager
Senior Manager
User avatar
Status: Bring the Rain
Joined: 17 Aug 2010
Posts: 408
Location: United States (MD)
Concentration: Strategy, Marketing
Schools: Michigan (Ross) - Class of 2014
GMAT 1: 730 Q49 V39
GPA: 3.13
WE: Corporate Finance (Aerospace and Defense)
Followers: 7

Kudos [?]: 43 [0], given: 46

Re: Facorial PS [#permalink] New post 11 Dec 2010, 18:59
Thanks for all the examples
_________________

Go Blue!

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Manager
Manager
avatar
Joined: 07 Jun 2010
Posts: 87
Followers: 1

Kudos [?]: 22 [0], given: 0

Re: Facorial PS [#permalink] New post 15 Feb 2011, 17:42
Thanks for the help on these.
Manager
Manager
avatar
Joined: 27 May 2012
Posts: 213
Followers: 0

Kudos [?]: 48 [0], given: 209

Re: Facorial PS [#permalink] New post 19 Jun 2012, 05:45
VeritasPrepKarishma wrote:
whiplash2411 wrote:
Would that also be 18? Since 12 is 6*2 and 6 would be the limiting factor? I feel like I might be missing something

Also kudos! Your explanation was fantastic.

Posted from my mobile device Image


Yes, greatest power of 12 in 40! will also be 18 because
12= 3*2^2
Total number of 3s = 13 + 4 + 1 = 18 (as shown above)
Total number of 2s in 40! is 20+10 + 5 + 2 + 1 = 38 (as shown above)
So you can make 19 4s. The limiting factor is still 3.
So rxs0005, bhushan288 and whiplash2411, you all had correct answers.

The interesting thing is the maximum power of 12 in 30!
30/2 = 15
15/2 = 7
7/2 = 3
3/2 = 1
Total 2s = 15 + 7 + 3 + 1 = 26 So you can make 13 4s
30/3 = 10
10/3 = 3
3/3 = 1
Total 3s = 10 + 3 + 1 = 14!

The maximum power of 12 is 13, not 14.
Here, the limiting factor is the number of 4s (i.e. half of the number of 2s). Of course the number of 2s is more but that number gets divided by 2 to make 4s. It becomes the limiting factor.
In such cases, you will need to check for both 2 and 3.



Applauds to both karishma and Bunuel for such wonderful way to attack these problems

karishma's way seemed easier at first , until I encountered highest power of 12 in 30!

somehow I understood : that I found the highest power of 2's then halved it to get 13

no. of 3's is 14 , so as explained the answer is 13 and not 14 because in this case the highest prime is not the limiting factor
but rather 2^2 is the limiting factor. Till here it was clear.


but I got stuck when I came to bunuels example of highest power of 900 in 50!

Karishma how to do it by your method? ( want to grasp both methods and then decide , which i'd like to use )

Highest no of 2's as shown by bunuel is 47 , now I cannot half it to find the highest power of 4 , that will give me a non integer.

Also highest power of greatest prime ( 5) is 12 and answer to this question is 6

so my concern , what is the limiting factor here , or how to approach this problem ,lets say Karishma's way .
_________________

- Stne

Expert Post
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4887
Location: Pune, India
Followers: 1162

Kudos [?]: 5439 [0], given: 165

Re: Facorial PS [#permalink] New post 19 Jun 2012, 06:03
Expert's post
1
This post was
BOOKMARKED
stne wrote:
but I got stuck when I came to bunuels example of highest power of 900 in 50!

Karishma how to do it by your method? ( want to grasp both methods and then decide , which i'd like to use )

Highest no of 2's as shown by bunuel is 47 , now I cannot half it to find the highest power of 4 , that will give me a non integer.

Also highest power of greatest prime ( 5) is 12 and answer to this question is 6

so my concern , what is the limiting factor here , or how to approach this problem ,lets say Karishma's way .


Let me ask you a question first:

What is the limiting factor in case you want to find the highest power of 6 in 50!
Would you say it is 3? Sure! You make a 6 using a 2 and a 3. You certainly will have fewer 3s as compared to number of 2s.

What is the limiting factor in case you want to find the highest power of 36 in 50!
Think! 36 = 2^2 * 3^2
Whatever the number of 2s and number of 3s, you will halve both of them. So again, the limiting factor will be 3.

What about 900?
900 = 2^2 * 3^2 * 5^2
Again, 5 will be your limiting factor here. Whatever the number of 2, 3 and 5, each will be halved. So you will still have the fewest number of half 5s (so to say).
Number of 5s is 12. So you can make six 900s from 50!

The question mark arises only when you have different powers and the smaller number has a higher power.
What is the limiting factor in case of 2^2*3? Not sure. We need to check.
What is the limiting factor in case of 2^4*3^2*7? Not sure. We need to check.
What is the limiting factor in case of 3*7^2? It has to be 7. We find the number of 7s (which is fewer than the number of 3s) and then further half it.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Manager
Manager
avatar
Joined: 02 Jun 2011
Posts: 160
Followers: 1

Kudos [?]: 26 [0], given: 11

Re: Facorial PS [#permalink] New post 25 Jun 2012, 04:38
Bunuel wrote:
rxs0005 wrote:
What is the greatest value of m such that 4m is a factor of 30! ?

(A) 13
(B) 12
(C) 11
(D) 7
(E) 6

is there an easier way to do this other than brute force


Finding the number of powers of a prime number k, in the n!.

The formula is:
\frac{n}{k}+\frac{n}{k^2}+\frac{n}{k^3} ... till n>k^x

For example: what is the power of 2 in 25! (the highest value of m for which 2^m is a factor of 25!)
\frac{25}{2}+\frac{25}{4}+\frac{25}{8}+\frac{25}{16}=12+6+3+1=22. So the highest power of 2 in 25! is 22: 2^{22}*k=25!, where k is the product of other multiple of 25!.

Check for more: everything-about-factorials-on-the-gmat-85592.html and math-number-theory-88376.html

Back to the original question:
What is the greatest value of m such that 4^m is a factor of 30! ?
A. 13
B. 12
C. 11
D. 7
E. 6

First of all it should be 4^m instead of 4m.

Now, 4^m=2^{2m}, so we should check the highest power of 2 in 30!: \frac{30}{2}+\frac{30}{4}+\frac{30}{8}+\frac{30}{16}=15+7+3+1=26. So the highest power of 2 in 30! is 26 --> 2m=26 --> m=13.

Answer: A.

Hope it's clear.


Dear Bunuel,

is this formulae is applied with primes ( 2, 3 ..) only?
the doubt is because you reduced 4 into 2..
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23505
Followers: 3636

Kudos [?]: 29404 [0], given: 2932

Re: What is the greatest value of m such that 4^m is a factor of [#permalink] New post 22 Aug 2013, 04:11
Expert's post
Manager
Manager
avatar
Joined: 10 Mar 2014
Posts: 106
Followers: 1

Kudos [?]: 18 [0], given: 6

CAT Tests
Re: What is the greatest value of m such that 4^m is a factor of [#permalink] New post 22 Apr 2014, 07:55
We can write 4 (power m) as 2(power2)m

then 30/2+30/4+30/8+30/16
= 15 +7+3+1

2m= 26
m = 13
Re: What is the greatest value of m such that 4^m is a factor of   [#permalink] 22 Apr 2014, 07:55
    Similar topics Author Replies Last post
Similar
Topics:
Experts publish their posts in the topic M20-02. If x is a prime number, what is the greatest factor Bunuel 1 23 May 2014, 08:51
2 Experts publish their posts in the topic If m = 3^n, what is the greatest value of n for which m is a hb 2 23 Jul 2013, 06:52
4 Experts publish their posts in the topic If 6^k is a factor of (40!), what is the greatest possible value of k? dimri10 6 10 Aug 2011, 08:00
What is the greatest value of x such that 8^x is a factor of tarek99 6 17 Oct 2008, 06:27
What is the greatest value of m such that 4m is a factor of briozeal 6 25 Jun 2006, 17:11
Display posts from previous: Sort by

What is the greatest value of m such that 4^m is a factor of

  Question banks Downloads My Bookmarks Reviews Important topics  


cron

GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.