Find all School-related info fast with the new School-Specific MBA Forum

It is currently 11 Jul 2014, 05:43

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

What is the last digit 3^{3^3} ? A. 1 B. 3 C. 6 D. 7 E. 9

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
Intern
Intern
avatar
Joined: 25 Nov 2009
Posts: 16
Location: San Francisco
Schools: Wharton West eMBA, Haas EW, Haas eMBA
Followers: 0

Kudos [?]: 6 [0], given: 4

Re: last digit of a power [#permalink] New post 02 Jan 2010, 21:18
thanks bubuel. For reminding me to read from the bottom up on these forums when there's a debate!
Senior Manager
Senior Manager
User avatar
Joined: 22 Dec 2009
Posts: 365
Followers: 10

Kudos [?]: 194 [0], given: 47

GMAT ToolKit User GMAT Tests User
Re: last digit of a power [#permalink] New post 31 Jan 2010, 09:51
elmagnifico wrote:
What is the last digit 3^{3^3} ?

* 1
* 3
* 6
* 7
* 9

please give detailed explanation.


Using the cyclisity methodology... :
3^(3^3) = 3^27

Cyclisity of 3 = 4....

27 mod 4 = 3....

Therefore last digit would be 3^3 = 7......

Ans is D
_________________

Cheers!
JT...........
If u like my post..... payback in Kudos!! :beer

|Do not post questions with OA|Please underline your SC questions while posting|Try posting the explanation along with your answer choice|
|For CR refer Powerscore CR Bible|For SC refer Manhattan SC Guide|


~~Better Burn Out... Than Fade Away~~

Intern
Intern
avatar
Joined: 27 Feb 2010
Posts: 6
Followers: 0

Kudos [?]: 4 [0], given: 2

Re: last digit of a power [#permalink] New post 28 Feb 2010, 08:35
amitdgr wrote:
Lets take another example

Find the last digit of 122^94

A. 2
B. 4
C. 6
D. 8
E. 9

Now the last digit of 122 is 2. We require only this number to determine the last digit of 122 raised to a positive power.

so the problem is essentially reduced to find the last digit of 2^94.

Now we know 2 has a cyclicity of 4. So we divide 94 by 4. The remainder for 94/4 is 2.

so last digit of 2^94 is same as that of 2^2 which is 4.

so last digit of 122^94 is 4 :)



Remember:
1) Numbers 2,3,7 and 8 have a cyclicity of 4
2) Numbers 0,1,5 and 6 have a cyclicity of 1 (ie) all the powers will have the same unit digit. eg. 5^245 will have "5" as unit digit, 5^2000 will aslo have "5" as unit digit. Same holds for 0,1 and 6
3) If 4 is the number in the unit place of the base number then the unit digit will be "4" if the power is odd and it will be "6" if the power is even. eg. 4^123 will have unit digit of 4 since 123 is odd.
4) Similarly, for 9 the unit digit will be "9" for odd powers and "1" for even powers. eg 9^234 has unit digit as "1" since 234 is even.



There is something wrong with rule 3!

Imagine we have 4^124 --> following your rule you would say unit digit = 6.

But, 4^124 =2^(2*124) = 2^248 since 2 has a cyclicity of 4 --> 248/4 yields a remainder = 0. then the units digit is 2^0=1.

Am I correct?? Thank you! It was a great post amitdgr...Kudos!

I always transform a 4 into a 2^2 and use rule 1
Senior Manager
Senior Manager
avatar
Joined: 01 Feb 2010
Posts: 268
Followers: 1

Kudos [?]: 34 [0], given: 2

GMAT Tests User
Re: last digit of a power [#permalink] New post 02 Mar 2010, 09:13
amitdgr wrote:
Remember:
1) Numbers 2,3,7 and 8 have a cyclicity of 4
2) Numbers 0,1,5 and 6 have a cyclicity of 1 (ie) all the powers will have the same unit digit. eg. 5^245 will have "5" as unit digit, 5^2000 will aslo have "5" as unit digit. Same holds for 0,1 and 6
3) If 4 is the number in the unit place of the base number then the unit digit will be "4" if the power is odd and it will be "6" if the power is even. eg. 4^123 will have unit digit of 4 since 123 is odd.
4) Similarly, for 9 the unit digit will be "9" for odd powers and "1" for even powers. eg 9^234 has unit digit as "1" since 234 is even.


Good points to remember.
Intern
Intern
User avatar
Status: GMAT once done, Going for GMAT 2nd time.
Joined: 29 Mar 2010
Posts: 34
Location: Los Angeles, CA
Schools: Anderson, Haas, Ross, Kellog, Booth, McCombs
Followers: 0

Kudos [?]: 1 [0], given: 3

GMAT Tests User
Re: last digit of a power [#permalink] New post 05 May 2010, 15:05
please explain me what the term "cyclicity" means. I am not quite following the method used to find the unit digit.
_________________

BP

Senior Manager
Senior Manager
avatar
Joined: 12 Jan 2010
Posts: 258
Schools: DukeTuck,Kelogg,Darden
Followers: 6

Kudos [?]: 34 [0], given: 28

GMAT Tests User Reviews Badge
Re: last digit of a power [#permalink] New post 06 May 2010, 07:16
valencia wrote:
please explain me what the term "cyclicity" means. I am not quite following the method used to find the unit digit.



Cyclicity in the context we are discussing means the frequency at which the last digit repeats itself for exponents.

ie

2^1 = 2
2^2 = 4
2^3 = 8
2^4 = 16
2^5 = 32
2^6 = 64
2^7 = 128
2^8 = 256
2^ 9 = 512..... so on

If you notice 2^1,2^5 and 2^ 9 have the same last digit(units digit) which is 2 so the last digit repeats itself after every 4 powers so cyclicity of 2 is 4.

Another example

9^1 = 9
9^2 = 81
9^3 = 729
9^4 = 6561
9^5 = 59049
9^6 = 531441

In this case 9^1,9^3 and 9^5 have the same last digit so cyclicity of 9 is 2.

Hope this clears it.

Now to solve a question all you need to do is divide the power of the exponent by the cyclicty of the base and find the last digit.

ie 9^898767

Now the power divided by 2 will give the remainder as 1
so last digit will be same as 9^1 = 9
_________________

Run towards the things that make you uncomfortable daily. The greatest risk is not taking risks
http://gmatclub.com/forum/from-690-to-730-q50-v38-97356.html

Manager
Manager
avatar
Status: GMAT Preperation
Joined: 04 Feb 2010
Posts: 105
Concentration: Social Entrepreneurship, Social Entrepreneurship
GPA: 3
WE: Consulting (Insurance)
Followers: 1

Kudos [?]: 9 [0], given: 15

Re: last digit of a power [#permalink] New post 29 Jun 2010, 03:49
Thanks, I understand what the term "cyclicity" means now. but can some one explain its application with GMAT question ?
Manager
Manager
User avatar
Joined: 07 Jan 2010
Posts: 147
Location: So. CA
WE 1: 2 IT
WE 2: 4 Software Analyst
Followers: 2

Kudos [?]: 8 [0], given: 57

GMAT Tests User
Re: last digit of a power [#permalink] New post 02 Sep 2010, 20:29
i'm pretty sure this topic has been beaten to death, but the GMAT Club Math book talks about this under: Number Theory :-D
Retired Moderator
avatar
Joined: 03 Aug 2010
Posts: 248
Followers: 2

Kudos [?]: 29 [0], given: 41

GMAT Tests User
Re: last digit of a power [#permalink] New post 18 Oct 2010, 11:13
Bunuel wrote:
azule45 wrote:
Assuming we follow the order of operations, wouldn't we take the equation from left to right? that being (3^3)^3 which would actually yield 27^3 or even 3^9?

if this is true, the answer would be 3 as the units digit.



RULE: The order of operation for exponents: x^y^z=x^(y^z) and not (x^y)^z. The rule is to work from the top down.

3^3^3=3^(3^3)=3^27

Cycle of 3 in power is four. The units digit of 3^27 is the same as for 3^3 (27=4*6+3) --> 7.



Bunuel.. Can you pls tell me how much power does 2 carry in below mentioned expression and how.. ?

32^32^32 == 2^x ===> what is the value of X and how ?

thanks in advance
_________________

http://www.gmatpill.com/gmat-practice-test/

Amazing Platform

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 18492
Followers: 3188

Kudos [?]: 21239 [0], given: 2537

Re: last digit of a power [#permalink] New post 19 Oct 2010, 14:37
Expert's post
hirendhanak wrote:
Bunuel wrote:
azule45 wrote:
Assuming we follow the order of operations, wouldn't we take the equation from left to right? that being (3^3)^3 which would actually yield 27^3 or even 3^9?

if this is true, the answer would be 3 as the units digit.



RULE: The order of operation for exponents: x^y^z=x^(y^z) and not (x^y)^z. The rule is to work from the top down.

3^3^3=3^(3^3)=3^27

Cycle of 3 in power is four. The units digit of 3^27 is the same as for 3^3 (27=4*6+3) --> 7.



Bunuel.. Can you pls tell me how much power does 2 carry in below mentioned expression and how.. ?

32^32^32 == 2^x ===> what is the value of X and how ?

thanks in advance


If exponentiation is indicated by stacked symbols, the rule is to work from the top down, thus:
a^m^n=a^{(m^n)} and not (a^m)^n, which on the other hand equals to a^{mn}.

So:
(a^m)^n=a^{mn};

a^m^n=a^{(m^n)} and not (a^m)^n.

According to above:

2^x=32^{{32}^{32}}=32^{{(2^5)}^{32}}=32^{2^{160}}={(2^5)}^{2^{160}}=2^{(5*2^{160})} --> x=5*2^{160}.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 04 Sep 2010
Posts: 9
Followers: 0

Kudos [?]: 0 [0], given: 4

Re: last digit of a power [#permalink] New post 12 Nov 2010, 20:10
chayanika wrote:
amitdgr wrote:
Lets take another example

Find the last digit of 122^94

A. 2
B. 4
C. 6
D. 8
E. 9

Now the last digit of 122 is 2. We require only this number to determine the last digit of 122 raised to a positive power.

so the problem is essentially reduced to find the last digit of 2^94.

Now we know 2 has a cyclicity of 4. So we divide 94 by 4. The remainder for 94/4 is 2.

so last digit of 2^94 is same as that of 2^2 which is 4.

so last digit of 122^94 is 4 :)



Remember:
1) Numbers 2,3,7 and 8 have a cyclicity of 4
2) Numbers 0,1,5 and 6 have a cyclicity of 1 (ie) all the powers will have the same unit digit. eg. 5^245 will have "5" as unit digit, 5^2000 will aslo have "5" as unit digit. Same holds for 0,1 and 6
3) If 4 is the number in the unit place of the base number then the unit digit will be "4" if the power is odd and it will be "6" if the power is even. eg. 4^123 will have unit digit of 4 since 123 is odd.
4) Similarly, for 9 the unit digit will be "9" for odd powers and "1" for even powers. eg 9^234 has unit digit as "1" since 234 is even.



Wow !! Awesome :) I tried out this thing with a few numbers and matched the results with my scientific calculator. This method gives perfect answers.

You deserve at least a dozen KUDOS for typing out all this patiently and sharing this knowledge with all of us.

+1 from me. Guys pour in Kudos for this :)

Chayanika


7 * zillion kudos from me. now wats the unit digit for this is something u will have to figure out :), but the method is awesome
Intern
Intern
avatar
Joined: 21 Nov 2010
Posts: 1
Followers: 0

Kudos [?]: 0 [0], given: 3

Re: last digit of a power [#permalink] New post 21 Nov 2010, 23:50
Actually, in my opinion 3^3^3 should be reduced to 3^9 as the formula goes: a^x^y = a^(xy). 3^9 = 19,683 --> the unit number is 3, not 7 as some of you explained before.

Or we can use the method as proposed by some guy here: 9 mod 4 = 1 --> the last digit will be 3^1 = 3.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 18492
Followers: 3188

Kudos [?]: 21239 [0], given: 2537

Re: last digit of a power [#permalink] New post 22 Nov 2010, 01:45
Expert's post
toannguyen wrote:
Actually, in my opinion 3^3^3 should be reduced to 3^9 as the formula goes: a^x^y = a^(xy). 3^9 = 19,683 --> the unit number is 3, not 7 as some of you explained before.

Or we can use the method as proposed by some guy here: 9 mod 4 = 1 --> the last digit will be 3^1 = 3.


OA for this question is D (7).

If exponentiation is indicated by stacked symbols, the rule is to work from the top down, thus:
a^m^n=a^{(m^n)} and not (a^m)^n, which on the other hand equals to a^{mn}.

So:
(a^m)^n=a^{mn};

a^m^n=a^{(m^n)} and not (a^m)^n.

According to above:

3^{3^3}=3^{(3^3)}=3^{27}

Cyclicity of 3 in positive integer power is four (the last digit of 3 in positive integer power repeats in the following patter {3-9-7-1}-{3-9-7-1}-...) --> the units digit of 3^{27} is the same as for 3^3 (27=4*6+3) --> 7.

Answer: D (7).
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 23 Nov 2010
Posts: 2
Followers: 0

Kudos [?]: 0 [0], given: 0

Re: last digit of a power [#permalink] New post 24 Nov 2010, 10:49
I absolutely agree with arturocb86. The rule number 3 seems to have something weird.
Just take a very simple example:
4^10 has the last digit of 6 because power 10 is an even number.
However, if we transfer 4^10 to 2^20 and use the formula 1, we'll have the last digit of 1 instead of 6 because power 20:4= 5 without remainder, so 2^0 = 1 <-- the last digit.
If fact, 2^20 = 1,048,576 has 6 as the last digit.
Anybody please help me out.
Intern
Intern
avatar
Joined: 17 Aug 2009
Posts: 41
Location: United States
Concentration: Finance, Entrepreneurship
GMAT 1: 740 Q49 V42
GPA: 3.29
WE: Engineering (Consulting)
Followers: 0

Kudos [?]: 11 [0], given: 4

Re: last digit of a power [#permalink] New post 24 Nov 2010, 15:49
hugonhoc wrote:
I absolutely agree with arturocb86. The rule number 3 seems to have something weird.
Just take a very simple example:
4^10 has the last digit of 6 because power 10 is an even number.
However, if we transfer 4^10 to 2^20 and use the formula 1, we'll have the last digit of 1 instead of 6 because power 20:4= 5 without remainder, so 2^0 = 1 <-- the last digit.
If fact, 2^20 = 1,048,576 has 6 as the last digit.
Anybody please help me out.


I don't think he said to use 0 as the exponent when the remainder is 0.

When you have no remainder you would use 4 as the exponent.

so 2 ^ 20 would have the same last digit as 2 ^4 which is 6.

In fact, 1 is never a unit digit of 2 to any power because

2 to any power will have unit digit of 2, 4, 8, or 6.
Intern
Intern
User avatar
Affiliations: isa.org
Joined: 26 Jan 2010
Posts: 23
Location: Mumbai, India.
Schools: ISB, India.
Followers: 0

Kudos [?]: 5 [0], given: 2

Re: last digit of a power [#permalink] New post 07 Feb 2011, 12:02
this table may be helpful for all..

1 1
2 4
3 4
4 2
5 1
6 1
7 4
8 4
9 2
10 1
_________________

"Great people don't do different things, they do things differently"

Director
Director
User avatar
Status: GMAT Learner
Joined: 14 Jul 2010
Posts: 653
Followers: 31

Kudos [?]: 187 [0], given: 32

GMAT Tests User
Re: last digit of a power [#permalink] New post 07 Feb 2011, 12:55
onceatsea wrote:
Here's another way of looking at it !

Here the given number is (xyz)^n
z is the last digit of the base.
n is the index

To find out the last digit in (xyz)^n, the following steps are to be followed.
Divide the index (n) by 4, then

Case I
If remainder = 0
then check if z is odd (except 5), then last digit = 1
and if z is even then last digit = 6

Case II
If remainder = 1, then required last digit = last digit of the base (i.e. z)
If remainder = 2, then required last digit = last digit of the base (z)^2
If remainder = 3, then required last digit = last digit of the base (z)^3

Note : If z = 5, then the last digit in the product = 5

Example:
Find the last digit in (295073)^130

Solution: Dividing 130 by 4, the remainder = 2
Refering to Case II, the required last digit is the last digit of (z)^2, ie (3)^2 = 9 , (because z = 3)




Thanks for this post
_________________

I am student of everyone-baten
Collections:-
PSof OG solved by GC members: http://gmatclub.com/forum/collection-ps-with-solution-from-gmatclub-110005.html
DS of OG solved by GC members: http://gmatclub.com/forum/collection-ds-with-solution-from-gmatclub-110004.html
100 GMAT PREP Quantitative collection http://gmatclub.com/forum/gmat-prep-problem-collections-114358.html
Collections of work/rate problems with solutions http://gmatclub.com/forum/collections-of-work-rate-problem-with-solutions-118919.html
Mixture problems in a file with best solutions: http://gmatclub.com/forum/mixture-problems-with-best-and-easy-solutions-all-together-124644.html

Director
Director
avatar
Joined: 01 Feb 2011
Posts: 771
Followers: 14

Kudos [?]: 79 [0], given: 42

GMAT Tests User
Re: last digit of a power [#permalink] New post 22 Apr 2011, 15:36
3^27 has a last digit of 7.

Answer is D.
Senior Manager
Senior Manager
avatar
Joined: 24 Mar 2011
Posts: 469
Location: Texas
Followers: 4

Kudos [?]: 49 [0], given: 20

Re: last digit of a power [#permalink] New post 20 May 2011, 11:56
bipolarbear wrote:
Is 3^3^3 definitely taken as 3^(3^3)?

Is reading it as (3^3)^3 incorrect?


yes you have to consider it top down.
VP
VP
avatar
Status: There is always something new !!
Affiliations: PMI,QAI Global,eXampleCG
Joined: 08 May 2009
Posts: 1365
Followers: 10

Kudos [?]: 130 [0], given: 10

GMAT Tests User
Re: last digit of a power [#permalink] New post 20 May 2011, 20:40
3^4 last digit = 1.

thus (3^3)^3 = 3^27

27/4 = gives remainder = 3.

hence 3^24 * 3^3 = 1* 7 (last digits products)

7
_________________

Visit -- http://www.sustainable-sphere.com/
Promote Green Business,Sustainable Living and Green Earth !!

Re: last digit of a power   [#permalink] 20 May 2011, 20:40
    Similar topics Author Replies Last post
Similar
Topics:
96 Experts publish their posts in the topic What is the last digit 3^{3^3} ? A. 1 B. 3 C. 6 D. 7 E. 9 elmagnifico 69 23 Sep 2008, 06:17
What is the last digit 3^{3^3} ? * 1 * 3 * 6 * 7 * 9 study 4 18 Oct 2008, 23:44
3 If |d - 9| = 2d, then d = A. -9 B. -3 C. 1 D. 3 E. 9 goalsnr 13 08 Jul 2008, 18:19
What is the unit's digit of 7^75 + 6? a. 1 b. 3 c. 5 d. 7 e. govinam 2 10 Aug 2007, 18:23
Find is the last digit of 3^(3^3) ? A) 1 B) 7 C) 6 D) 3 E) 5 briozeal 8 12 Nov 2005, 10:48
Display posts from previous: Sort by

What is the last digit 3^{3^3} ? A. 1 B. 3 C. 6 D. 7 E. 9

  Question banks Downloads My Bookmarks Reviews Important topics  

Go to page   Previous    1   2   3   4    Next  [ 70 posts ] 

Moderators: WoundedTiger, Bunuel



GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.