Find all School-related info fast with the new School-Specific MBA Forum

It is currently 22 Oct 2014, 08:11

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

What is the positive integer n?

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
1 KUDOS received
Director
Director
avatar
Status: Preparing for the 4th time -:(
Joined: 25 Jun 2011
Posts: 562
Location: United Kingdom
Concentration: International Business, Strategy
GMAT Date: 06-22-2012
GPA: 2.9
WE: Information Technology (Consulting)
Followers: 13

Kudos [?]: 522 [1] , given: 217

What is the positive integer n? [#permalink] New post 27 Jan 2012, 15:08
1
This post received
KUDOS
4
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  85% (hard)

Question Stats:

49% (02:33) correct 51% (01:17) wrong based on 286 sessions
What is the positive integer n?

(1) For every positive integer m, the product m(m + 1)(m + 2) ... (m + n) is divisible by 16
(2) n^2 - 9n + 20 = 0

[Reveal] Spoiler:
Guys - the OA is C. But can someone please let me know what does statement 1 implies over here?

For me it says that the product of consecutive integers is divisible by 16. But how its used in this question?

I understand statement 2 though.
[Reveal] Spoiler: OA

_________________

Best Regards,
E.

MGMAT 1 --> 530
MGMAT 2--> 640
MGMAT 3 ---> 610 :-(


Last edited by Bunuel on 01 Oct 2012, 04:47, edited 1 time in total.
Renamed the topic and edited the question.
Expert Post
9 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23375
Followers: 3607

Kudos [?]: 28780 [9] , given: 2847

Re: +ve integer n [#permalink] New post 27 Jan 2012, 15:38
9
This post received
KUDOS
Expert's post
enigma123 wrote:
What is the positive integer n?
(1) For every positive integer m, the product m(m + 1)(m + 2) ... (m + n) is divisible by 16
(2) n^2 - 9n + 20 = 0

Guys - the OA is C. But can someone please let me know what does statement 1 implies over here?

For me it says that the product of consecutive integers is divisible by 16. But how its used in this question?

I understand statement 2 though.


What is the positive integer n?

(1) For every positive integer m, the product m(m + 1)(m + 2) ... (m + n) is divisible by 16 --> as the given product is divisible by 16 for EVERY positive integer then the least value of n will be for the worst case scenario, which is for m=1, then m(m + 1)(m + 2) ... (m + n) to be divisible by 16 n must be at least 5: 1*2*3*4*5*6=divisible by 16 (as we have three even numbers out of which one is also a multiple of 4, so the product has 2*2^2*2=16 as a factor), but if n=4 and m=1 then 1*2*3*4*5 is not divisible by 16. Naturally if n is more than 5, then the product m(m + 1)(m + 2) ... (m + n) will also be divisible by 16 for the same reason: there will be at least 3 evens out of which one is also a multiple of 4. So from this statement we have that: n\geq{5}. Not sufficient.

Side note: we basically have the product of n+1 consecutive integers which is always divisible by (n+1)! and it to be divisible by 16, n must be more than or equal to 5.

(2) n^2 - 9n + 20 = 0 --> n=4 or n=5. Not Sufficient.

(1)+(2) From (1) n\geq{5} and from (2) n=4 or n=5 --> n=5. Sufficient.

Answer: C.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Director
Director
avatar
Joined: 24 Aug 2009
Posts: 508
Schools: Harvard, Columbia, Stern, Booth, LSB,
Followers: 9

Kudos [?]: 395 [0], given: 241

Re: +ve integer n [#permalink] New post 30 Sep 2012, 14:52
Bunuel wrote:
enigma123 wrote:
What is the positive integer n?
(1) For every positive integer m, the product m(m + 1)(m + 2) ... (m + n) is divisible by 16
(2) n^2 - 9n + 20 = 0

Guys - the OA is C. But can someone please let me know what does statement 1 implies over here?

For me it says that the product of consecutive integers is divisible by 16. But how its used in this question?

I understand statement 2 though.


What is the positive integer n?

(1) For every positive integer m, the product m(m + 1)(m + 2) ... (m + n) is divisible by 16 --> as the given product is divisible by 16 for EVERY positive integer then the least value of n will be for the worst case scenario, which is for m=1, then m(m + 1)(m + 2) ... (m + n) to be divisible by 16 n must be at least 5: 1*2*3*4*5*6=divisible by 16 (as we have three even numbers out of which one is also a multiple of 4, so the product has 2*2^2*2=16 as a factor), but if n=4 and m=1 then 1*2*3*4*5 is not divisible by 16. Naturally if n is more than 5, then the product m(m + 1)(m + 2) ... (m + n) will also be divisible by 16 for the same reason: there will be at least 3 evens out of which one is also a multiple of 4. So from this statement we have that: n\geq{5}. Not sufficient.

Side note: we basically have the product of n+1 consecutive integers which is always divisible by (n+1)! and it to be divisible by 16, n must be more than or equal to 5.

(2) n^2 - 9n + 20 = 0 --> n=4 or n=5. Not Sufficient.

(1)+(2) From (1) n\geq{5} and from (2) n=4 or n=5 --> n=5. Sufficient.

Answer: C.



Hi bunuel,
I have a doubt in this question.
Value of m Minimum value of n
1 5
2 4
3 5
4 4
5 4
6 3
7 4
8 3
9 4
10 3
11 4
12 3
1) Thus n can be n<=5-->Insufficient
2) n can be 4 or 5 -Insufficient
1+2) n can take both 4 or 5 - Insufficient

So as per me answer has to be E, & if i am wrong where am i making mistake.
Waiting eagerly for your response
_________________

If you like my Question/Explanation or the contribution, Kindly appreciate by pressing KUDOS.
Kudos always maximizes GMATCLUB worth
-Game Theory

If you have any question regarding my post, kindly pm me or else I won't be able to reply

Expert Post
1 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4876
Location: Pune, India
Followers: 1152

Kudos [?]: 5360 [1] , given: 165

Re: What is the positive integer n? (1) For every positive [#permalink] New post 30 Sep 2012, 21:31
1
This post received
KUDOS
Expert's post
enigma123 wrote:
What is the positive integer n?
(1) For every positive integer m, the product m(m + 1)(m + 2) ... (m + n) is divisible by 16
(2) n^2 - 9n + 20 = 0

Guys - the OA is C. But can someone please let me know what does statement 1 implies over here?

For me it says that the product of consecutive integers is divisible by 16. But how its used in this question?

I understand statement 2 though.


Product of consecutive integers have some properties. e.g. product of any two consecutive positive integers is even, product of any 3 consecutive integers is even and is divisible by 3 so basically the product is divisible by 6. Why and how? Check out these posts:
http://www.veritasprep.com/blog/2011/09 ... c-or-math/
http://www.veritasprep.com/blog/2011/09 ... h-part-ii/

The first statement just tells you that every product of (n+1) consecutive integers is always divisible by 16.

Say if n = 3
Is 1*2*3*4 divisible by 16? No! So n cannot be 3.

Is 1*2*3....*14*15*16 divisible by 16? Yes. Will product of any 16 consecutive integers be divisible by 16? Yes. Product of any 17 consecutive integers will also be divisible by 16. So n can take many values.

What is the smallest value that n can take?
Every set of 4 consecutive integers will have a number which has 4 as a factor and it will have another even number i.e. the product of 4 consecutive numbers must be divisible by 8.
When you have product of 5 consecutive factors, again the product must be divisible by at least 8 e.g. 1*2*3*4*5
When you have 6 consecutive factors, there must be a number with 4 as a factor and 2 other even numbers i.e. the product must have 16 as a factor e.g. 1*2*3*4*5*6
Therefore, you must have at least 6 consecutive integers i.e. n must be at least 5.

@fameatop: n cannot be 4. If you have 5 consecutive factors, the product will not be divisible by 16 in every case e.g. it is not divisible in case of 1*2*3*4*5

Statement 1 tells you that n is at least 5
Statement 2 tells you that n is 4 or 5.

So n must be 5 using both
Answer (C)
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

4 KUDOS received
Director
Director
User avatar
Joined: 22 Mar 2011
Posts: 612
WE: Science (Education)
Followers: 73

Kudos [?]: 529 [4] , given: 43

Re: What is the positive integer n? (1) For every positive [#permalink] New post 01 Oct 2012, 02:41
4
This post received
KUDOS
enigma123 wrote:
What is the positive integer n?
(1) For every positive integer m, the product m(m + 1)(m + 2) ... (m + n) is divisible by 16
(2) n^2 - 9n + 20 = 0

Guys - the OA is C. But can someone please let me know what does statement 1 implies over here?

For me it says that the product of consecutive integers is divisible by 16. But how its used in this question?

I understand statement 2 though.


Usually, when approaching a DS question, you start with statement (1), then go to statement (2)...
If you don't know how to attack statement (1), go directly to (2), especially if it looks "friendlier", as in this case.

(2) The given quadratic equation has two solutions: n=4 and n=5.
Not sufficient. So, the answer is certainly not B.

Now go back to (1) and start by checking the two values for n you obtained in (2).
Take m=1. Obviously, 1\cdot2\cdot3\cdot4\cdot5 is not divisible by 16, but 1\cdot2\cdot3\cdot4\cdot5\cdot6 is.
The answer can be C, if without the condition in statement (2), there can be more than one value of n which fulfills the condition.
You don't have to look for the smallest n. Obviously, if n=15, we have 16 consecutive numbers, so their product is definitely divisible by 16.
Therefore, the answer cannot be A.

In conclusion, answer is C.
_________________

PhD in Applied Mathematics
Love GMAT Quant questions and running.

Intern
Intern
avatar
Joined: 06 Jul 2012
Posts: 2
GMAT Date: 10-18-2012
Followers: 0

Kudos [?]: 5 [0], given: 2

Re: What is the positive integer n? [#permalink] New post 03 Oct 2012, 08:54
Hi

From statement 1, if we consider m=2,
2*3*4*5*6 will be divisible by 16.
and here m+n=6 => n=4

So IMO the ans should be E

please correct me if I am wrong.
1 KUDOS received
Director
Director
User avatar
Joined: 22 Mar 2011
Posts: 612
WE: Science (Education)
Followers: 73

Kudos [?]: 529 [1] , given: 43

Re: What is the positive integer n? [#permalink] New post 03 Oct 2012, 09:47
1
This post received
KUDOS
ashd wrote:
Hi

From statement 1, if we consider m=2,
2*3*4*5*6 will be divisible by 16.
and here m+n=6 => n=4

So IMO the ans should be E

please correct me if I am wrong.


Statement (1) says: For every positive integer m, the product m(m + 1)(m + 2) ... (m + n) is divisible by 16.
If m = 1 and n = 4, 1*2*3*4*5 is not divisible by 16. So n cannot be 4.
_________________

PhD in Applied Mathematics
Love GMAT Quant questions and running.

Intern
Intern
avatar
Joined: 06 Jul 2012
Posts: 2
GMAT Date: 10-18-2012
Followers: 0

Kudos [?]: 5 [0], given: 2

Re: What is the positive integer n? [#permalink] New post 03 Oct 2012, 10:46
Quote:
Statement (1) says: For every positive integer m, the product m(m + 1)(m + 2) ... (m + n) is divisible by 16.
If m = 1 and n = 4, 1*2*3*4*5 is not divisible by 16. So n cannot be 4.


Hi

Again my question, why are we only considering the case where m=1?
why cant we consider m = 2 or the series starting from 2
In this case, 2*3*4*5*6 is divisible by 16
Director
Director
User avatar
Joined: 22 Mar 2011
Posts: 612
WE: Science (Education)
Followers: 73

Kudos [?]: 529 [0], given: 43

Re: What is the positive integer n? [#permalink] New post 03 Oct 2012, 11:18
ashd wrote:
Quote:
Statement (1) says: For every positive integer m, the product m(m + 1)(m + 2) ... (m + n) is divisible by 16.
If m = 1 and n = 4, 1*2*3*4*5 is not divisible by 16. So n cannot be 4.


Hi

Again my question, why are we only considering the case where m=1?
why cant we consider m = 2 or the series starting from 2
In this case, 2*3*4*5*6 is divisible by 16


We are not considering only the case m=1. For a given n, the product m(m+1)(m+2)...(m+n) must be divisible by 16 for m=1, also for m=2, for m=3, ..., for every integer m. But if for a specific value of m the product is not divisible by 16, that particular n is not an acceptable value. Since for m=1 the product is not divisible by 16 when n=4, we can conclude that n cannot be 4. The property doesn't for for m=9 either: 9*10*11*12*13. If you continue, you can find even more values for m for which the property will not hold when n=4.
_________________

PhD in Applied Mathematics
Love GMAT Quant questions and running.

Expert Post
1 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4876
Location: Pune, India
Followers: 1152

Kudos [?]: 5360 [1] , given: 165

Re: What is the positive integer n? [#permalink] New post 03 Oct 2012, 19:20
1
This post received
KUDOS
Expert's post
ashd wrote:
Quote:
Statement (1) says: For every positive integer m, the product m(m + 1)(m + 2) ... (m + n) is divisible by 16.
If m = 1 and n = 4, 1*2*3*4*5 is not divisible by 16. So n cannot be 4.


Hi

Again my question, why are we only considering the case where m=1?
why cant we consider m = 2 or the series starting from 2
In this case, 2*3*4*5*6 is divisible by 16


It is a technique we use. We want to find the value of n which holds for every possible value of m. When you want to prove that a particular value of n will hold for every value of m, it is very hard to do. You possibly cannot calculate for EVERY value of m. So we use the reverse logic. We assume that n takes a particular value and then try to find one value of m for which it doesn't hold. Then we can say that n cannot take that particular value.

Here, we are saying that if n = 4, it doesn't hold for m = 1. It doesn't matter whether it holds for other values of m or not. As long as there is even a single value of m for which it doesn't hold, we know n cannot be 4.

When n = 5, we see that it holds for quite a few values of m. Now the question is, will it hold for every value of m? For that, we use our theoretical knowledge to say that yes, it will hold for every value of m.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23375
Followers: 3607

Kudos [?]: 28780 [0], given: 2847

Re: What is the positive integer n? [#permalink] New post 14 Aug 2013, 01:24
Expert's post
Intern
Intern
avatar
Joined: 23 Jul 2013
Posts: 22
Followers: 0

Kudos [?]: 5 [0], given: 63

GMAT ToolKit User
Re: What is the positive integer n? (1) For every positive [#permalink] New post 11 Sep 2013, 23:03
EvaJager wrote:
enigma123 wrote:
What is the positive integer n?
(1) For every positive integer m, the product m(m + 1)(m + 2) ... (m + n) is divisible by 16
(2) n^2 - 9n + 20 = 0

Guys - the OA is C. But can someone please let me know what does statement 1 implies over here?

For me it says that the product of consecutive integers is divisible by 16. But how its used in this question?

I understand statement 2 though.


Usually, when approaching a DS question, you start with statement (1), then go to statement (2)...
If you don't know how to attack statement (1), go directly to (2), especially if it looks "friendlier", as in this case.

(2) The given quadratic equation has two solutions: n=4 and n=5.
Not sufficient. So, the answer is certainly not B.

Now go back to (1) and start by checking the two values for n you obtained in (2).
Take m=1. Obviously, 1\cdot2\cdot3\cdot4\cdot5 is not divisible by 16, but 1\cdot2\cdot3\cdot4\cdot5\cdot6 is.
The answer can be C, if without the condition in statement (2), there can be more than one value of n which fulfills the condition.
You don't have to look for the smallest n. Obviously, if n=15, we have 16 consecutive numbers, so their product is definitely divisible by 16.
Therefore, the answer cannot be A.

In conclusion, answer is C.



Found it really understandable.. Thank You So much Sir .

if (1) is not friendly go to (2) and take out possible values..it will save lot of time and thinking.. :)

Regards
Ishdeep Singh
Intern
Intern
avatar
Joined: 28 Sep 2012
Posts: 12
Followers: 0

Kudos [?]: 0 [0], given: 8

CAT Tests
Re: +ve integer n [#permalink] New post 15 Jun 2014, 18:00
fameatop wrote:
Bunuel wrote:
enigma123 wrote:
What is the positive integer n?
(1) For every positive integer m, the product m(m + 1)(m + 2) ... (m + n) is divisible by 16
(2) n^2 - 9n + 20 = 0

Guys - the OA is C. But can someone please let me know what does statement 1 implies over here?

For me it says that the product of consecutive integers is divisible by 16. But how its used in this question?

I understand statement 2 though.


What is the positive integer n?

(1) For every positive integer m, the product m(m + 1)(m + 2) ... (m + n) is divisible by 16 --> as the given product is divisible by 16 for EVERY positive integer then the least value of n will be for the worst case scenario, which is for m=1, then m(m + 1)(m + 2) ... (m + n) to be divisible by 16 n must be at least 5: 1*2*3*4*5*6=divisible by 16 (as we have three even numbers out of which one is also a multiple of 4, so the product has 2*2^2*2=16 as a factor), but if n=4 and m=1 then 1*2*3*4*5 is not divisible by 16. Naturally if n is more than 5, then the product m(m + 1)(m + 2) ... (m + n) will also be divisible by 16 for the same reason: there will be at least 3 evens out of which one is also a multiple of 4. So from this statement we have that: n\geq{5}. Not sufficient.

Side note: we basically have the product of n+1 consecutive integers which is always divisible by (n+1)! and it to be divisible by 16, n must be more than or equal to 5.

(2) n^2 - 9n + 20 = 0 --> n=4 or n=5. Not Sufficient.

(1)+(2) From (1) n\geq{5} and from (2) n=4 or n=5 --> n=5. Sufficient.

Answer: C.



Hi bunuel,
I have a doubt in this question.
Value of m Minimum value of n
1 5
2 4
3 5
4 4
5 4
6 3
7 4
8 3
9 4
10 3
11 4
12 3
1) Thus n can be n<=5-->Insufficient
2) n can be 4 or 5 -Insufficient
1+2) n can take both 4 or 5 - Insufficient

So as per me answer has to be E, & if i am wrong where am i making mistake.
Waiting eagerly for your response



Hi bunuel,
I have a doubt in this question.
Value of m Minimum value of n
1 5
2 4
3 5
4 4
5 4
6 3
7 4
8 3
9 4
10 3
11 4
12 3
1) Thus n can be n<=5-->Insufficient
2) n can be 4 or 5 -Insufficient
1+2) n can take both 4 or 5 - Insufficient

So as per me answer has to be E, & if i am wrong where am i making mistake.
Waiting eagerly for your response
Manager
Manager
User avatar
Joined: 20 Dec 2013
Posts: 119
Followers: 1

Kudos [?]: 42 [0], given: 1

Re: What is the positive integer n? [#permalink] New post 15 Jun 2014, 21:40
enigma123 wrote:
What is the positive integer n?

(1) For every positive integer m, the product m(m + 1)(m + 2) ... (m + n) is divisible by 16
(2) n^2 - 9n + 20 = 0

[Reveal] Spoiler:
Guys - the OA is C. But can someone please let me know what does statement 1 implies over here?

For me it says that the product of consecutive integers is divisible by 16. But how its used in this question?

I understand statement 2 though.


Statement I is insufficient:
If n = 8 then m(m+1)(m+2)...(m+8) will have at least 4 even integers which means the product will have to be divisible by 16
same goes for n = 9, n = 10 etc....

Statement II is insufficient:
n^2 - 5n - 4n + 20 = 0
n(n-5) - 4( n - 5) = 0
(n-5) (n-4) = 0

We get two value of n, hence not sufficient.

Combining is sufficient:

If we say that n = 4 then m (m+1) (m+2) (m+3) (m+4) will not be divisible by 16 if m = 1 (1 (2)(3)(4)(5))
If we say that n = 5 then m (m+1) (m+2)(m+3) (m+4)(m+5) will always be divisible by 16. Lets try m = 1(2)(3)(4)(5)(6) as there will be a minimum of 3 even numbers with a multiple of 4 between them. Hence a factor of 16 is a must.

Hence the answer is C.
_________________

Perfect Scores

If you think our post was valuable then please encourage us with Kudos :)

To learn GMAT for free visit:

http://Perfect-Scores.com
http://Youtube.com/PerfectScores
http://Facebook.com/PerfectScores

Re: What is the positive integer n?   [#permalink] 15 Jun 2014, 21:40
    Similar topics Author Replies Last post
Similar
Topics:
2 Experts publish their posts in the topic What is the value of the positive integer n ? Bunuel 5 03 Jan 2014, 05:17
7 Experts publish their posts in the topic What is the positive integer n? enigma123 3 27 Jan 2012, 14:44
What is the value of positive integer n? Madelaine88 6 28 Feb 2011, 01:31
N is a positive integer, what is the probability that tweakxc03 1 20 Sep 2009, 14:14
2 Experts publish their posts in the topic What is the positive integer n? sludge 36 16 Aug 2007, 16:31
Display posts from previous: Sort by

What is the positive integer n?

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.