What is the remainder when 32^32^32 is divided by 7? : GMAT Problem Solving (PS)
Check GMAT Club Decision Tracker for the Latest School Decision Releases http://gmatclub.com/AppTrack

 It is currently 18 Jan 2017, 03:14

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# What is the remainder when 32^32^32 is divided by 7?

Author Message
TAGS:

### Hide Tags

CEO
Status: Nothing comes easy: neither do I want.
Joined: 12 Oct 2009
Posts: 2795
Location: Malaysia
Concentration: Technology, Entrepreneurship
Schools: ISB '15 (M)
GMAT 1: 670 Q49 V31
GMAT 2: 710 Q50 V35
Followers: 226

Kudos [?]: 1619 [7] , given: 235

What is the remainder when 32^32^32 is divided by 7? [#permalink]

### Show Tags

02 Sep 2010, 17:23
7
KUDOS
34
This post was
BOOKMARKED
00:00

Difficulty:

85% (hard)

Question Stats:

45% (02:04) correct 55% (01:22) wrong based on 1022 sessions

### HideShow timer Statistics

What is the remainder when $$32^{32^{32}}$$ is divided by 7?

A. 5
B. 4
C. 2
D. 0
E. 1

Check the solution here : tough-remainder-question-100316.html#p774893
[Reveal] Spoiler: OA

_________________

Fight for your dreams :For all those who fear from Verbal- lets give it a fight

Money Saved is the Money Earned

Jo Bole So Nihaal , Sat Shri Akaal

GMAT Club Premium Membership - big benefits and savings

Gmat test review :
http://gmatclub.com/forum/670-to-710-a-long-journey-without-destination-still-happy-141642.html

Last edited by gurpreetsingh on 04 Sep 2010, 10:43, edited 1 time in total.
Senior Manager
Status: Time to step up the tempo
Joined: 24 Jun 2010
Posts: 408
Location: Milky way
Schools: ISB, Tepper - CMU, Chicago Booth, LSB
Followers: 8

Kudos [?]: 196 [2] , given: 50

### Show Tags

02 Sep 2010, 18:16
2
KUDOS
2
This post was
BOOKMARKED
My approach:

32^32^32 -- $$2^5$$^$$2^5$$^$$2^5$$

=> 2^800

$$(2^x)/7$$ has a cyclicity or repeatability of 3.
That is $$(2^1)/7 - 2$$, $$(2^2)/7- 4$$, $$(2^3)/7 - 1$$ .....

Hence (2^800)/7 boils down to the same as $$(2^2)/7$$ which is 4.

_________________

Support GMAT Club by putting a GMAT Club badge on your blog

Last edited by ezhilkumarank on 02 Sep 2010, 18:32, edited 1 time in total.
CEO
Status: Nothing comes easy: neither do I want.
Joined: 12 Oct 2009
Posts: 2795
Location: Malaysia
Concentration: Technology, Entrepreneurship
Schools: ISB '15 (M)
GMAT 1: 670 Q49 V31
GMAT 2: 710 Q50 V35
Followers: 226

Kudos [?]: 1619 [0], given: 235

### Show Tags

02 Sep 2010, 18:22
How you got 2^800? read the question carefully.

Just quote my question and see how I have used the mathematical operation for the powers. This way you can represent them better as your solution is quite difficult to understand.
_________________

Fight for your dreams :For all those who fear from Verbal- lets give it a fight

Money Saved is the Money Earned

Jo Bole So Nihaal , Sat Shri Akaal

GMAT Club Premium Membership - big benefits and savings

Gmat test review :
http://gmatclub.com/forum/670-to-710-a-long-journey-without-destination-still-happy-141642.html

Senior Manager
Status: Time to step up the tempo
Joined: 24 Jun 2010
Posts: 408
Location: Milky way
Schools: ISB, Tepper - CMU, Chicago Booth, LSB
Followers: 8

Kudos [?]: 196 [0], given: 50

### Show Tags

02 Sep 2010, 18:47
gurpreetsingh wrote:
How you got 2^800? read the question carefully.

Just quote my question and see how I have used the mathematical operation for the powers. This way you can represent them better as your solution is quite difficult to understand.

Got it. Here is the updated post.

$$32^{{32}^{32}$$ -- $${{2^5}^{{2^5}^{2^5}}}$$

$${{2^5}^{2^5}}$$ is $${2^{160}}$$.

Again $${{2^{160}}^{32}}$$ is $${2^{5120}}$$

(2^x)/7 has a cyclicity or repeatability of 3.
That is $${2^1}/7 - 2$$, $${2^2}/7- 4$$, $${2^3}/7 - 1$$ .....

Hence $${2^{5120}}/7$$ boils down to the same as $${2^{2}}/7$$ which is 4.

_________________

Support GMAT Club by putting a GMAT Club badge on your blog

CEO
Status: Nothing comes easy: neither do I want.
Joined: 12 Oct 2009
Posts: 2795
Location: Malaysia
Concentration: Technology, Entrepreneurship
Schools: ISB '15 (M)
GMAT 1: 670 Q49 V31
GMAT 2: 710 Q50 V35
Followers: 226

Kudos [?]: 1619 [0], given: 235

### Show Tags

02 Sep 2010, 19:05
ezhilkumarank wrote:
gurpreetsingh wrote:
How you got 2^800? read the question carefully.

Just quote my question and see how I have used the mathematical operation for the powers. This way you can represent them better as your solution is quite difficult to understand.

Got it. Here is the updated post.

$$32^{{32}^{32}$$ -- $${{2^5}^{{2^5}^{2^5}}}$$

$${{2^5}^{2^5}}$$ is $${2^{160}}$$.

Again $${{2^{160}}^{32}}$$ is $${2^{5120}}$$

(2^x)/7 has a cyclicity or repeatability of 3.
That is $${2^1}/7 - 2$$, $${2^2}/7- 4$$, $${2^3}/7 - 1$$ .....

Hence $${2^{5120}}/7$$ boils down to the same as $${2^{2}}/7$$ which is 4.

Take my advice when ever you solve your question always check the scope and domain.

do you think $$32^{32^{32}}$$ can be equal to $${2^{5120}}$$ ?

$$32^{32^{32}}$$ = $$2^{5*{32^{32}}}$$

$$2^{5*{32^{32}}}$$ should be equal to $${2^{5120}}$$
=> $$5*{32^{32}}$$ should be equal to 5120. ? This is wrong.

Just cross check always whether you are making right moves or not.
I hope you know your mistake now?
_________________

Fight for your dreams :For all those who fear from Verbal- lets give it a fight

Money Saved is the Money Earned

Jo Bole So Nihaal , Sat Shri Akaal

GMAT Club Premium Membership - big benefits and savings

Gmat test review :
http://gmatclub.com/forum/670-to-710-a-long-journey-without-destination-still-happy-141642.html

Manager
Status: He who asks is a fool for five minutes, but he who does not ask remains a fool forever
Joined: 20 Aug 2010
Posts: 101
Followers: 2

Kudos [?]: 7 [1] , given: 2

### Show Tags

02 Sep 2010, 19:29
1
KUDOS
1
This post was
BOOKMARKED
Is it 4? My took following approach,

Last digit of 32^32 will be 4 , so last digit of 32^4 will be same as 32^1. so 32/7 =4.

Please correct me if I am wrong
CEO
Status: Nothing comes easy: neither do I want.
Joined: 12 Oct 2009
Posts: 2795
Location: Malaysia
Concentration: Technology, Entrepreneurship
Schools: ISB '15 (M)
GMAT 1: 670 Q49 V31
GMAT 2: 710 Q50 V35
Followers: 226

Kudos [?]: 1619 [0], given: 235

### Show Tags

02 Sep 2010, 19:45
PositiveSoul wrote:
Is it 4? My took following approach,

Last digit of 32^32 will be 4 , so last digit of 32^4 will be same as 32^1. so 32/7 =4.

Please correct me if I am wrong

Last two digits of 32^32 is 76 not 4.

Also last digit of 32^4 is 6 and it is not same as 32^1
_________________

Fight for your dreams :For all those who fear from Verbal- lets give it a fight

Money Saved is the Money Earned

Jo Bole So Nihaal , Sat Shri Akaal

GMAT Club Premium Membership - big benefits and savings

Gmat test review :
http://gmatclub.com/forum/670-to-710-a-long-journey-without-destination-still-happy-141642.html

Senior Manager
Status: Time to step up the tempo
Joined: 24 Jun 2010
Posts: 408
Location: Milky way
Schools: ISB, Tepper - CMU, Chicago Booth, LSB
Followers: 8

Kudos [?]: 196 [0], given: 50

### Show Tags

02 Sep 2010, 20:19
gurpreetsingh wrote:
ezhilkumarank wrote:
gurpreetsingh wrote:
How you got 2^800? read the question carefully.

Just quote my question and see how I have used the mathematical operation for the powers. This way you can represent them better as your solution is quite difficult to understand.

Got it. Here is the updated post.

$$32^{{32}^{32}$$ -- $${{2^5}^{{2^5}^{2^5}}}$$

$${{2^5}^{2^5}}$$ is $${2^{160}}$$.

Again $${{2^{160}}^{32}}$$ is $${2^{5120}}$$

(2^x)/7 has a cyclicity or repeatability of 3.
That is $${2^1}/7 - 2$$, $${2^2}/7- 4$$, $${2^3}/7 - 1$$ .....

Hence $${2^{5120}}/7$$ boils down to the same as $${2^{2}}/7$$ which is 4.

Take my advice when ever you solve your question always check the scope and domain.

do you think $$32^{32^{32}}$$ can be equal to $${2^{5120}}$$ ?

$$32^{32^{32}}$$ = $$2^{5*{32^{32}}}$$

$$2^{5*{32^{32}}}$$ should be equal to $${2^{5120}}$$
=> $$5*{32^{32}}$$ should be equal to 5120. ? This is wrong.

Just cross check always whether you are making right moves or not.
I hope you know your mistake now?

Not sure if I got what you mentioned, but upon analyzing my approach I found the error.

$${{2^5}^{2^5}} is {2^{160}}$$. -- This is correct.

[highlight]Again $${{2^{160}}^{32}} is {2^{5120}}$$[/highlight] -- This is the incorrect part.

The above line should have been $${32^{2^{160}}}$$.

Now if I understand correctly, this was the only error in my approach. Further proceeding to solve the question....

{32^1}/7 - 4, {32^2}/7 - 2, {32^3}/7 - 1, {32^4}/7 - 4 .... hence the repeatability is 3.

Now $$32^{2^{160}}$$ should be the same as the power of 32 which is $${2^{160}}$$ divided by 3.

$${2^{160}}$$ divided by 3 is the same as $${2^{1}}$$ divided by 3 -- which is 2.

Now combining them $$32^{2^{160}}/7$$ is the same as $${32^{2^1}}/7$$

which is 2. Final answer should be 2 (C).

Hope I have answered correctly this time. I will await the final solution and the explanation.
_________________

Support GMAT Club by putting a GMAT Club badge on your blog

Manager
Joined: 17 Oct 2008
Posts: 196
Followers: 1

Kudos [?]: 25 [0], given: 11

### Show Tags

02 Sep 2010, 23:03
gurpreetsingh wrote:
What is the remainder when $$32^{32^{32}}$$ is divided by 7?

A. 5
B. 4
C. 2
D. 0
E. 1

I got B

$$32^{32^{32}}$$ can be reduced as {32^32} ^ 32 = 1024 ^ 32

and 1024 = 2^10

= (2)^10*32 -> 2^320

R[ (2^x)/7 ] is cyclical,2^320/7 is same as 2^2/7 and the answer is 4!

correct me if am wrong
Intern
Joined: 02 Sep 2010
Posts: 3
Followers: 0

Kudos [?]: 8 [5] , given: 1

### Show Tags

03 Sep 2010, 02:59
5
KUDOS
2
This post was
BOOKMARKED
gurpreetsingh wrote:
What is the remainder when $$32^{32^{32}}$$ is divided by 7?

A. 5
B. 4
C. 2
D. 0
E. 1

I will post the Answer and the explanation after some replies.

Intuitively, i did it like this.

32^32^32 = (28+4)^32^32
As 28 is divisible by 7, we dont need to worry about that part. Hence for the purpose of remainder,
our equation boils down to 4^32^32

The cyclicity of 4 is 3 when divided by 7, hence we need to think about the value of 32^32 and what remainder it leaves when divided by 3.

Considering 32^32, it can be broken into (30+2)^32. Again 30^32 is divisible by 3. Hence we need to focus on 2^32.
2^32 can be written as (2*2)^31 = (3+1)^31. As 3^31 is also divisible by 3, we will be left with 1^31.
Thus 1 would be the remainder when 32^32 is divided by 3.

This implies that 4 will be the remainder when divided by 7.

Do let me know if i am wrong in my thinking.

Thanks.
CEO
Status: Nothing comes easy: neither do I want.
Joined: 12 Oct 2009
Posts: 2795
Location: Malaysia
Concentration: Technology, Entrepreneurship
Schools: ISB '15 (M)
GMAT 1: 670 Q49 V31
GMAT 2: 710 Q50 V35
Followers: 226

Kudos [?]: 1619 [0], given: 235

### Show Tags

03 Sep 2010, 05:31
ramana wrote:
gurpreetsingh wrote:
What is the remainder when $$32^{32^{32}}$$ is divided by 7?

A. 5
B. 4
C. 2
D. 0
E. 1

I got B

$$32^{32^{32}}$$ can be reduced as {32^32} ^ 32 = 1024 ^ 32

and 1024 = 2^10

= (2)^10*32 -> 2^320

R[ (2^x)/7 ] is cyclical,2^320/7 is same as 2^2/7 and the answer is 4!

correct me if am wrong

Check this : tough-remainder-question-100316.html#p773920

You are making the same mistake. Also 1024 - 32^2 not 32^32.
_________________

Fight for your dreams :For all those who fear from Verbal- lets give it a fight

Money Saved is the Money Earned

Jo Bole So Nihaal , Sat Shri Akaal

GMAT Club Premium Membership - big benefits and savings

Gmat test review :
http://gmatclub.com/forum/670-to-710-a-long-journey-without-destination-still-happy-141642.html

CEO
Status: Nothing comes easy: neither do I want.
Joined: 12 Oct 2009
Posts: 2795
Location: Malaysia
Concentration: Technology, Entrepreneurship
Schools: ISB '15 (M)
GMAT 1: 670 Q49 V31
GMAT 2: 710 Q50 V35
Followers: 226

Kudos [?]: 1619 [1] , given: 235

### Show Tags

03 Sep 2010, 05:33
1
KUDOS
Is this even a GMAT Question...??????
because if it is I need to start worrying about Quants as well....

If this question is asked in the exam, it will be at 750+ level. So do not worry even if you are not able to solve this. Sometimes we learn concepts by understanding the explanation of difficult problem and use them while solving similar questions.

Give it a try and do not lose your confidence. When I will post the explanation do read and understand it carefully.
_________________

Fight for your dreams :For all those who fear from Verbal- lets give it a fight

Money Saved is the Money Earned

Jo Bole So Nihaal , Sat Shri Akaal

GMAT Club Premium Membership - big benefits and savings

Gmat test review :
http://gmatclub.com/forum/670-to-710-a-long-journey-without-destination-still-happy-141642.html

Manager
Joined: 25 Jun 2010
Posts: 91
Followers: 1

Kudos [?]: 34 [1] , given: 0

### Show Tags

03 Sep 2010, 06:51
1
KUDOS
1
This post was
BOOKMARKED
32^32^32 % 7 = ?

I am using Euler's method, search on wikipedia if you need proof, else try to follow the steps :

HCF(32,7) = 1
"phi" 7 = 6 (it is the number of positive integers less than 7 and prime to 7.. In fact for any prime number "n", it will be "n-1").

=> 32^6 mod 7 = 1 (mod is same as "%")

(To make sure you understand it, please try for any number n!=7, n^6 mod 7 = 1)

So, we now need to express, 32^32 = 6x+k

i.e. 32^32 % 6 = ?

To make it easier, lets try to find out 16^32 % 3 and multiply the remainder by 4 (since 32 and 6 has a common factor 2, and also it is easier/helpful to get a remainder divided by a prime number)

Apply the same approach as shown above :
HCF(16,3) = 1
"phi" 3 = 2

=> 16^2 mod 3 = 1
=> 16^32 mod 3 = 1 => 32^32 mod 6 = 4*1 = 4

So, 32^32 mod 6 = 6y+4

Therefore;
32^32^32 mod 7 = 32^(6y+4) mod 7 = 32^4 mod 7 = (28+4)^4 mod 7 = 4^4 mod 7 = 4

(Hopefully, I didn't make any typo.... Let me know if there is any problem with understanding this)

Thanks

Last edited by anshumishra on 03 Sep 2010, 09:18, edited 1 time in total.
CEO
Status: Nothing comes easy: neither do I want.
Joined: 12 Oct 2009
Posts: 2795
Location: Malaysia
Concentration: Technology, Entrepreneurship
Schools: ISB '15 (M)
GMAT 1: 670 Q49 V31
GMAT 2: 710 Q50 V35
Followers: 226

Kudos [?]: 1619 [0], given: 235

### Show Tags

03 Sep 2010, 07:43
anshumishra : Its good if you know Euler theorem. The theorem is Fermat's little theorem that uses Euler theorem.

Guys you do not have to learn all these theorems for Gmat, if you know then its good if not then also you can solve this question using basics of remainders.Do not panic.

When 32^32 is divided by 6 the remainder is 4 not 2. Please check your solution.

32^32 when divided by 6 gives remainder same as when 2^32 is divided by 6

=> 2^32 mod 6 = $$(2^{5*{6}} )* (2^2)$$ mod 6 = 32^6 * 4 mod 6

= 2^6 *4 mod 6 = 2^5 * 2^3 mod 6 = 2*2 = 4
_________________

Fight for your dreams :For all those who fear from Verbal- lets give it a fight

Money Saved is the Money Earned

Jo Bole So Nihaal , Sat Shri Akaal

GMAT Club Premium Membership - big benefits and savings

Gmat test review :
http://gmatclub.com/forum/670-to-710-a-long-journey-without-destination-still-happy-141642.html

Manager
Joined: 25 Jun 2010
Posts: 91
Followers: 1

Kudos [?]: 34 [0], given: 0

### Show Tags

03 Sep 2010, 09:19
Thanks Gurpreet, I have edited my post where i missed to multiply by 4 instead of 2.
I have made "4" as bold 4.

Thanks
Manager
Joined: 25 Jun 2010
Posts: 91
Followers: 1

Kudos [?]: 34 [0], given: 0

### Show Tags

03 Sep 2010, 13:07
1
This post was
BOOKMARKED
mainhoon wrote:
How do you get 32x32= 6x +k?
anshumishra wrote:
32^32^32 % 7 = ?

I am using Euler's method, search on wikipedia if you need proof, else try to follow the steps :

HCF(32,7) = 1
"phi" 7 = 6 (it is the number of positive integers less than 7 and prime to 7.. In fact for any prime number "n", it will be "n-1").

=> 32^6 mod 7 = 1 (mod is same as "%")

(To make sure you understand it, please try for any number n!=7, n^6 mod 7 = 1)

So, we now need to express, 32^32 = 6x+k

i.e. 32^32 % 6 = ?

To make it easier, lets try to find out 16^32 % 3 and multiply the remainder by 4 (since 32 and 6 has a common factor 2, and also it is easier/helpful to get a remainder divided by a prime number)

Apply the same approach as shown above :
HCF(16,3) = 1
"phi" 3 = 2

=> 16^2 mod 3 = 1
=> 16^32 mod 3 = 1 => 32^32 mod 6 = 4*1 = 4

So, 32^32 mod 6 = 6y+4

Therefore;
32^32^32 mod 7 = 32^(6y+4) mod 7 = 32^4 mod 7 = (28+4)^4 mod 7 = 4^4 mod 7 = 4

(Hopefully, I didn't make any typo.... Let me know if there is any problem with understanding this)

Thanks

Posted from my mobile device

You mean : How do you get 32^32= 6x +k?
Since, 32^6 mod 7 = 1
Hence 32^6x mod 7 = 1, that is why I am trying to express 32^32 in terms of 32^(6x+K), that way you have to just be concerned about calculating32^K mod 7

How it has been calculated is shown above.
CEO
Status: Nothing comes easy: neither do I want.
Joined: 12 Oct 2009
Posts: 2795
Location: Malaysia
Concentration: Technology, Entrepreneurship
Schools: ISB '15 (M)
GMAT 1: 670 Q49 V31
GMAT 2: 710 Q50 V35
Followers: 226

Kudos [?]: 1619 [3] , given: 235

### Show Tags

04 Sep 2010, 10:26
3
KUDOS
6
This post was
BOOKMARKED
gurpreetsingh wrote:
What is the remainder when $$32^{32^{32}}$$ is divided by 7?

A. 5
B. 4
C. 2
D. 0
E. 1

Many of you got the correct answer but wrong explanation and it is the biggest losing point of the learning as the same question is never going to come.

trueblue nailed it with correct explanation.

Here is my explanation and I would request the Quant guru of Gmat Club - Bunnel to correct and improve my explanation for the solutions.

$$32^{32^{32}}$$ looks quite daunting, but remember one thing on exams like GMAT you will always get tricky and convoluted questions. But they can solved by simple Quant basics.

Always reduce your question.... Rof means remainder of

Rof $$32^{32^{32}}$$ when divided by 7 = Rof $$4^{32^{32}}$$ by 7 as 28+4 = 32

To calculate Rof $$4^{32^{32}}$$ , we need to understand how to reduce it further.

Whenever we are solving remainder questions we always reduce it to the minimum value. To reduce the powers of 4 we need to find $$4^x$$ such that when $$4^x$$ is divided by 7 the remainder is either 1 or -1

Reason : Rof $$4^{xy}$$ = Rof $$4^x * 4^y$$ = Rof $$4^{x}$$ * Rof $$4^{y}$$

If remainder of Rof $$4^{x}$$ =1 , then we can reduce the Rof $$4^{y}$$ multiple times until y>x.

Since Rof $$4^{3}$$ when divided by 7 is 1, if we can reduce $$4^{32^{32}}$$ to the form of $$4^{3k+r}$$ we can easily eliminate redundant powers of 4.

To represent $$4^{32^{32}}$$ as $$4^{3k+r}$$ we need to represent $$32^{32}$$ in the form of $$3k+r$$.

Now to represent $$32^32$$ in the form of $$3k+r$$, we have to find the remainder when $$32^{32}$$ is divided by 3. That will give the value of r.

Rof $$32^{32}$$ when divided by 3 = Rof $$2^{32}$$ = Rof $$2^{4*{8}}$$

Since Rof $$2^4$$when divided by 3 = 1, => Rof $$2^{4*{8}}$$ = 1

Hence r = 1 => $$32^{32}$$ = 3k+1

Now coming back to the main question.

Rof $$4^{32^{32}}$$ = Rof $$4^{3k+1}$$ = Rof $$4^{3k}$$ * Rof $$4^1$$ = 1*4 = 4

Hence B.

Whenever you see such question, always apply the above rule.
_________________

Fight for your dreams :For all those who fear from Verbal- lets give it a fight

Money Saved is the Money Earned

Jo Bole So Nihaal , Sat Shri Akaal

GMAT Club Premium Membership - big benefits and savings

Gmat test review :
http://gmatclub.com/forum/670-to-710-a-long-journey-without-destination-still-happy-141642.html

CEO
Status: Nothing comes easy: neither do I want.
Joined: 12 Oct 2009
Posts: 2795
Location: Malaysia
Concentration: Technology, Entrepreneurship
Schools: ISB '15 (M)
GMAT 1: 670 Q49 V31
GMAT 2: 710 Q50 V35
Followers: 226

Kudos [?]: 1619 [0], given: 235

### Show Tags

04 Sep 2010, 10:35
Similar question to test what you have learnt from the previous post.

What is the remainder when $$32^{32^{32}}$$ is divided by 9?

A. 7
B. 4
C. 2
D. 0
E. 1
_________________

Fight for your dreams :For all those who fear from Verbal- lets give it a fight

Money Saved is the Money Earned

Jo Bole So Nihaal , Sat Shri Akaal

GMAT Club Premium Membership - big benefits and savings

Gmat test review :
http://gmatclub.com/forum/670-to-710-a-long-journey-without-destination-still-happy-141642.html

Math Expert
Joined: 02 Sep 2009
Posts: 36540
Followers: 7074

Kudos [?]: 93068 [12] , given: 10541

### Show Tags

04 Sep 2010, 10:44
12
KUDOS
Expert's post
23
This post was
BOOKMARKED
gurpreetsingh wrote:
What is the remainder when $$32^{32^{32}}$$ is divided by 7?

A. 5
B. 4
C. 2
D. 0
E. 1

I will post the Answer and the explanation after some replies.

If we use the above approach I'd work with prime as a base.

$$32^{{32}^{32}}=(28+4)^{{32}^{32}}$$ now if we expand this, all terms but the last one will have 28 as a multiple and thus will be divisible by 7. The last term will be $$4^{{32}^{32}}=4^{{(2^5)}^{32}}=4^{2^{160}}=2^{2^{161}}$$. So we should find the remainder when $$2^{2^{161}}$$ is divided by 7.

2^1 divided by 7 yields remainder of 2;
2^2 divided by 7 yields remainder of 4;
2^3 divided by 7 yields remainder of 1;

2^4 divided by 7 yields remainder of 2;
2^5 divided by 7 yields remainder of 4;
2^6 divided by 7 yields remainder of 1;
...

The remainder repeats the pattern of 3: 2-4-1.

So we should find $$2^{161}$$ (the power of 2) is 1st, 2nd or 3rd number in the above pattern of 3. $$2^{161}$$ is 2 in odd power, 2 in odd power gives remainder of 2 when divided by cyclicity number 3, so it's the second number in pattern. Which means that remainder of $$2^{2^{161}}$$ divided by 7 would be the same as $$2^2$$ divided by 7. $$2^2$$ divided by 7 yields remainder of 4.

Similar problem: remainder-99724.html?hilit=expand%20this,%20all%20terms#p768816

Hope it's clear.
_________________
Manager
Joined: 25 Jun 2010
Posts: 91
Followers: 1

Kudos [?]: 34 [0], given: 0

### Show Tags

04 Sep 2010, 11:31
32^32^32 % 9 = ?

32^32^32 = 2^2^161
Here the remainder repeats the pattern of 6: 2,4,8,7,5,1

So, 2^2^161 % 9 = 2^5 % 9 = 5
Re: Tough remainder question   [#permalink] 04 Sep 2010, 11:31

Go to page    1   2   3   4    Next  [ 72 posts ]

Similar topics Replies Last post
Similar
Topics:
2 What is the remainder when 7^442 is divided by 10? 5 22 Sep 2016, 16:29
If n divided by 7 has a remainder of 2, what is the remainder when 3 5 21 Mar 2016, 06:28
29 What is the remainder when 333^222 is divided by 7? 19 21 Jul 2013, 01:16
1 What is the remainder when 7^381 is divided by 5 ? 5 06 Oct 2009, 00:30
15 What is the remainder when 7^74 - 5^74 is divided by 24? 13 03 Jul 2008, 12:19
Display posts from previous: Sort by