Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Re: please explain the answer how the authore arrives to that [#permalink]
25 Feb 2011, 06:40

1

This post received KUDOS

Expert's post

naaga wrote:

What is the remainder when the positive integer n is divided by 2? (1) When n is divided by 5, the remainder is an odd integer. (2) When n is divided by 10, the remainder is an odd integer

What is the remainder when the positive integer n is divided by 2?

Question basically asks whether n is odd or even: if it's odd then the remainder will be 1 and if it's even then the remainder will be zero.

(1) When n is divided by 5, the remainder is an odd integer --> n=5q+odd, so n could be odd (1, 3, 11, 13, 21, 23, ...) as well as even (6, 8, 16, 18, ... ). Not sufficient.

(2) When n is divided by 10, the remainder is an odd integer --> n=10p+odd=even+odd=odd. Sufficient.

Answer: B.

P. S. naaga please always tag your questions. _________________

Re: What is the remainder when the positive integer n is divided [#permalink]
10 Oct 2013, 10:36

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________

Re: What is the remainder when the positive integer n is divided [#permalink]
08 Jul 2014, 02:38

Bunuel wrote:

naaga wrote:

What is the remainder when the positive integer n is divided by 2? (1) When n is divided by 5, the remainder is an odd integer. (2) When n is divided by 10, the remainder is an odd integer

What is the remainder when the positive integer n is divided by 2?

Question basically asks whether n is odd or even: if it's odd then the remainder will be 1 and if it's even then the remainder will be zero.

(1) When n is divided by 5, the remainder is an odd integer --> n=5q+odd, so n could be odd (1, 3, 11, 13, 21, 23, ...) as well as even (6, 8, 16, 18, ... ). Not sufficient.

(2) When n is divided by 10, the remainder is an odd integer --> n=10p+odd=even+odd=odd. Sufficient.

Answer: B.

P. S. naaga please always tag your questions.

Bunuel,

how can the remainder of n/5 be 11 or 6 and so on? Isn't it always between 1 and 4? e.g. 9/ 5 = 1+4 or 23 / 5 = 1+3. What am I getting wrong here?

What is the remainder when the positive integer n is divided [#permalink]
08 Jul 2014, 03:34

Expert's post

unceldolan wrote:

Bunuel wrote:

naaga wrote:

What is the remainder when the positive integer n is divided by 2? (1) When n is divided by 5, the remainder is an odd integer. (2) When n is divided by 10, the remainder is an odd integer

What is the remainder when the positive integer n is divided by 2?

Question basically asks whether n is odd or even: if it's odd then the remainder will be 1 and if it's even then the remainder will be zero.

(1) When n is divided by 5, the remainder is an odd integer --> n=5q+odd, so n could be odd (1, 3, 11, 13, 21, 23, ...) as well as even (6, 8, 16, 18, ... ). Not sufficient.

(2) When n is divided by 10, the remainder is an odd integer --> n=10p+odd=even+odd=odd. Sufficient.

Answer: B.

P. S. naaga please always tag your questions.

Bunuel,

how can the remainder of n/5 be 11 or 6 and so on? Isn't it always between 1 and 4? e.g. 9/ 5 = 1+4 or 23 / 5 = 1+3. What am I getting wrong here?

Those are possible values of n, not the possible values of the remainders upon division n by 5. _________________