Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

What is the remainder when the positive integer n is divided [#permalink]
10 May 2009, 20:09

1

This post received KUDOS

00:00

A

B

C

D

E

Difficulty:

(N/A)

Question Stats:

36% (02:43) correct
64% (00:55) wrong based on 65 sessions

What is the remainder when the positive integer n is divided by 2? (1) When n is divided by 5, the remainder is an odd integer. (2) When n is divided by 10, the remainder is an odd integer.

What is the remainder when the positive integer n is divided by 2? (1) When n is divided by 5, the remainder is an odd integer. (2) When n is divided by 10, the remainder is an odd integer.

(1) Let n = 8, remainder 3.....so, 8/2 = remainder = 0 Let n = 16, remainder 1....so 16/2 = remainder = 0 Suff (2) n = can be 10,30,50,70,90,110,130 etc All these numbers are divisible by 2, remainder = 0 Suff

What is the remainder when the positive integer n is divided by 2? (1) When n is divided by 5, the remainder is an odd integer. (2) When n is divided by 10, the remainder is an odd integer.

Without testing numbers:

First, there are only two remainders possible when you divide n by 2: 0 and 1. The remainder is 0 if n is even, and 1 if n is odd. So the question is really just asking "is n odd?"

Remember the quotient/remainder definition. When we divide n by d, we have n = qd + r, where r is the remainder and q the quotient.

From S1, n = 5q + r, where r is odd. So n = 5q + odd, and n could be even if q is odd, and n could be odd if q is even. Insufficient.

From S2, n = 10q + r where r is odd. So n = even + odd = odd. Sufficient. _________________

Nov 2011: After years of development, I am now making my advanced Quant books and high-level problem sets available for sale. Contact me at ianstewartgmat at gmail.com for details.

What is the remainder when the positive integer n is divided by 2? (1) When n is divided by 5, the remainder is an odd integer. (2) When n is divided by 10, the remainder is an odd integer.

Without testing numbers:

First, there are only two remainders possible when you divide n by 2: 0 and 1. The remainder is 0 if n is even, and 1 if n is odd. So the question is really just asking "is n odd?"

Remember the quotient/remainder definition. When we divide n by d, we have n = qd + r, where r is the remainder and q the quotient.

From S1, n = 5q + r, where r is odd. So n = 5q + odd, and n could be even if q is odd, and n could be odd if q is even. Insufficient.

From S2, n = 10q + r where r is odd. So n = even + odd = odd. Sufficient.

Really really love any thorough explaination like this.

What is the remainder when the positive integer n is divided by 2? (1) When n is divided by 5, the remainder is an odd integer. (2) When n is divided by 10, the remainder is an odd integer.

Without testing numbers:

First, there are only two remainders possible when you divide n by 2: 0 and 1. The remainder is 0 if n is even, and 1 if n is odd. So the question is really just asking "is n odd?"

Remember the quotient/remainder definition. When we divide n by d, we have n = qd + r, where r is the remainder and q the quotient.

From S1, n = 5q + r, where r is odd. So n = 5q + odd, and n could be even if q is odd, and n could be odd if q is even. Insufficient.

From S2, n = 10q + r where r is odd. So n = even + odd = odd. Sufficient.

What is the remainder when the positive integer n is divided by 2? (1) When n is divided by 5, the remainder is an odd integer. (2) When n is divided by 10, the remainder is an odd integer.

Without testing numbers:

First, there are only two remainders possible when you divide n by 2: 0 and 1. The remainder is 0 if n is even, and 1 if n is odd. So the question is really just asking "is n odd?"

Remember the quotient/remainder definition. When we divide n by d, we have n = qd + r, where r is the remainder and q the quotient.

From S1, n = 5q + r, where r is odd. So n = 5q + odd, and n could be even if q is odd, and n could be odd if q is even. Insufficient.

From S2, n = 10q + r where r is odd. So n = even + odd = odd. Sufficient.

Really really love any thorough explaination like this.