Find all School-related info fast with the new School-Specific MBA Forum

It is currently 28 Aug 2016, 17:09
GMAT Club Tests

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

What is the sum of all 4-digit numbers that can be formed

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Senior Manager
Senior Manager
User avatar
Affiliations: SPG
Joined: 15 Nov 2006
Posts: 327
Followers: 14

Kudos [?]: 633 [0], given: 20

What is the sum of all 4-digit numbers that can be formed [#permalink]

Show Tags

New post 26 May 2010, 00:38
15
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

(N/A)

Question Stats:

38% (01:47) correct 62% (00:26) wrong based on 42 sessions

HideShow timer Statistics

What is the sum of all 4-digit numbers that can be formed using the digits 1,2,3,4 where repetition of digits is allowed?

I am sorry I don't have the OA. But I think it is solvable without the OA
_________________

press kudos, if you like the explanation, appreciate the effort or encourage people to respond.

Download the Ultimate SC Flashcards

Expert Post
16 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 34475
Followers: 6287

Kudos [?]: 79770 [16] , given: 10022

Re: Can someone help? [#permalink]

Show Tags

New post 26 May 2010, 03:32
16
This post received
KUDOS
Expert's post
19
This post was
BOOKMARKED
dimitri92 wrote:
I am sorry I don't have the OA. But I think it is solvable without the OA

What is the sum of all 4-digit numbers that can be formed using the digits 1,2,3,4 where repetition of digits is allowed?


As each digit of four digit number (abcd) can take 4 options (1, 2, 3, 4) total there can be 4^4 numbers.

Obviously each digit (a, b, c, and d) will take the value of 1, 2, 3, 4 equal number of times, so each digit will take the value of 1, 2, 3, 4 - \(\frac{4^4}{4}=4^3=64\) times: units digit will take the values of 1, 2, 3, 4 - 64 times and the same with tens, hundreds, thousands digits.

So the sum would be 64*(1+2+3+4)+64*10*(1+2+3+4)+64*100*(1+2+3+4)+64*1000*(1+2+3+4)=64*10*(1+10+100+1000)=711040.

Actually there is the direct formula for this kind of problems. Of course it's better to understand the concept, then to memorize the formula but in case someone is interested here it is:

1. Sum of all the numbers which can be formed by using the \(n\) digits without repetition is: (n-1)!*(sum of the digits)*(111…..n times).

2. Sum of all the numbers which can be formed by using the \(n\) digits (repetition being allowed) is: \(n^{n-1}\)*(sum of the digits)*(111…..n times).

Hope it helps.
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Senior Manager
Senior Manager
User avatar
Affiliations: SPG
Joined: 15 Nov 2006
Posts: 327
Followers: 14

Kudos [?]: 633 [0], given: 20

Re: Can someone help? [#permalink]

Show Tags

New post 26 May 2010, 23:47
merci !! very well done
_________________

press kudos, if you like the explanation, appreciate the effort or encourage people to respond.

Download the Ultimate SC Flashcards

Manager
Manager
avatar
Joined: 20 Apr 2010
Posts: 153
Location: I N D I A
Followers: 3

Kudos [?]: 19 [0], given: 16

Re: Can someone help? [#permalink]

Show Tags

New post 26 May 2010, 23:57
Could you plz explain this :

so each digit will take the value of 1, 2, 3, 4 - \frac{4^4}{4}=4^3=64 times

Thanks & Regards
Expert Post
3 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 34475
Followers: 6287

Kudos [?]: 79770 [3] , given: 10022

Re: Can someone help? [#permalink]

Show Tags

New post 27 May 2010, 08:13
3
This post received
KUDOS
Expert's post
sag wrote:
Could you plz explain this :

so each digit will take the value of 1, 2, 3, 4 - \frac{4^4}{4}=4^3=64 times

Thanks & Regards


Total such numbers = 4^4 = 256.

1/4 of these numbers, or 64 numbers, will have units digit of 1; another 1/4 will have the units digit of 2; another 1/4 will have the units digit of 3; and the last 1/4 will have the units digit of 4.

The same with tens, hundreds, thousands digits.

Hope it's clear.
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Manager
Manager
avatar
Joined: 20 Apr 2010
Posts: 153
Location: I N D I A
Followers: 3

Kudos [?]: 19 [0], given: 16

Re: Can someone help? [#permalink]

Show Tags

New post 27 May 2010, 22:41
Thanks Bunuel.. +1..
Manager
Manager
avatar
Status: Last few days....Have pressed the throttle
Joined: 20 Jun 2010
Posts: 71
WE 1: 6 years - Consulting
Followers: 3

Kudos [?]: 42 [0], given: 27

Re: Can someone help? [#permalink]

Show Tags

New post 23 Aug 2010, 07:43
Agreed. These are powerful formulas but the concept behind it should be understood before roting them.
_________________

Consider giving Kudos if my post helps in some way

GMAT Club Legend
GMAT Club Legend
User avatar
Joined: 09 Sep 2013
Posts: 11116
Followers: 511

Kudos [?]: 134 [0], given: 0

Premium Member
Re: What is the sum of all 4-digit numbers that can be formed [#permalink]

Show Tags

New post 14 Oct 2013, 13:41
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Intern
Intern
avatar
Joined: 05 Feb 2014
Posts: 48
Followers: 0

Kudos [?]: 13 [0], given: 49

Re: Can someone help? [#permalink]

Show Tags

New post 19 May 2014, 12:11
Bunuel wrote:
dimitri92 wrote:
I am sorry I don't have the OA. But I think it is solvable without the OA

What is the sum of all 4-digit numbers that can be formed using the digits 1,2,3,4 where repetition of digits is allowed?


As each digit of four digit number (abcd) can take 4 options (1, 2, 3, 4) total there can be 4^4 numbers.

Obviously each digit (a, b, c, and d) will take the value of 1, 2, 3, 4 equal number of times, so each digit will take the value of 1, 2, 3, 4 - \(\frac{4^4}{4}=4^3=64\) times: units digit will take the values of 1, 2, 3, 4 - 64 times and the same with tens, hundreds, thousands digits.

So the sum would be 64*(1+2+3+4)+64*10*(1+2+3+4)+64*100*(1+2+3+4)+64*1000*(1+2+3+4)=64*10*(1+10+100+1000)=711040.

Actually there is the direct formula for this kind of problems. Of course it's better to understand the concept, then to memorize the formula but in case someone is interested here it is:

1. Sum of all the numbers which can be formed by using the \(n\) digits without repetition is: (n-1)!*(sum of the digits)*(111…..n times).

2. Sum of all the numbers which can be formed by using the \(n\) digits (repetition being allowed) is: \(n^{n-1}\)*(sum of the digits)*(111…..n times).

Hope it helps.



Hi Bunuel,

Can we say that the sum of the numbers will be 1111 to 4444 ? since the repetition of the digits are allowed. I think this range would cover all the numbers. Then we can simply use the formula for arithmetic mean to calculate the sum ? Please correct my thinking if wrong.
Intern
Intern
avatar
Joined: 13 May 2014
Posts: 40
Concentration: General Management, Strategy
Followers: 1

Kudos [?]: 54 [0], given: 1

Re: Can someone help? [#permalink]

Show Tags

New post 19 May 2014, 13:16
gauravsoni wrote:
Bunuel wrote:
dimitri92 wrote:
I am sorry I don't have the OA. But I think it is solvable without the OA

What is the sum of all 4-digit numbers that can be formed using the digits 1,2,3,4 where repetition of digits is allowed?


As each digit of four digit number (abcd) can take 4 options (1, 2, 3, 4) total there can be 4^4 numbers.

Obviously each digit (a, b, c, and d) will take the value of 1, 2, 3, 4 equal number of times, so each digit will take the value of 1, 2, 3, 4 - \(\frac{4^4}{4}=4^3=64\) times: units digit will take the values of 1, 2, 3, 4 - 64 times and the same with tens, hundreds, thousands digits.

So the sum would be 64*(1+2+3+4)+64*10*(1+2+3+4)+64*100*(1+2+3+4)+64*1000*(1+2+3+4)=64*10*(1+10+100+1000)=711040.

Actually there is the direct formula for this kind of problems. Of course it's better to understand the concept, then to memorize the formula but in case someone is interested here it is:

1. Sum of all the numbers which can be formed by using the \(n\) digits without repetition is: (n-1)!*(sum of the digits)*(111…..n times).

2. Sum of all the numbers which can be formed by using the \(n\) digits (repetition being allowed) is: \(n^{n-1}\)*(sum of the digits)*(111…..n times).

Hope it helps.



Hi Bunuel,

Can we say that the sum of the numbers will be 1111 to 4444 ? since the repetition of the digits are allowed. I think this range would cover all the numbers. Then we can simply use the formula for arithmetic mean to calculate the sum ? Please correct my thinking if wrong.


The range of the numbers do vary from 1111 to 4444 inclusive, and there are only 264 different numbers altogether formed.
however, what do you mean by the sum of the numbers will be 1111 to 4444 is not clear.

The formula as given when repetition is allowed is pretty simple :
n^{n-1}*(sum of the digits)*(111…..n times).


Here, n^{n-1} : the no of times each digit appear at each place
needs to be multiplied by sum (of the digits) as all the digits take that place
multiplied by 111... upto n times - to finally find the value at each place

You could see the manner in which the total sum could be arrived at with the formula.
Hope it helps.

Press kudos if you wish to appreciate
Intern
Intern
avatar
Joined: 17 May 2014
Posts: 40
Followers: 0

Kudos [?]: 26 [0], given: 3

Re: Can someone help? [#permalink]

Show Tags

New post 19 May 2014, 20:01
gauravsoni wrote:
Bunuel wrote:
dimitri92 wrote:
I am sorry I don't have the OA. But I think it is solvable without the OA

What is the sum of all 4-digit numbers that can be formed using the digits 1,2,3,4 where repetition of digits is allowed?


As each digit of four digit number (abcd) can take 4 options (1, 2, 3, 4) total there can be 4^4 numbers.

Obviously each digit (a, b, c, and d) will take the value of 1, 2, 3, 4 equal number of times, so each digit will take the value of 1, 2, 3, 4 - \(\frac{4^4}{4}=4^3=64\) times: units digit will take the values of 1, 2, 3, 4 - 64 times and the same with tens, hundreds, thousands digits.

So the sum would be 64*(1+2+3+4)+64*10*(1+2+3+4)+64*100*(1+2+3+4)+64*1000*(1+2+3+4)=64*10*(1+10+100+1000)=711040.

Actually there is the direct formula for this kind of problems. Of course it's better to understand the concept, then to memorize the formula but in case someone is interested here it is:

1. Sum of all the numbers which can be formed by using the \(n\) digits without repetition is: (n-1)!*(sum of the digits)*(111…..n times).

2. Sum of all the numbers which can be formed by using the \(n\) digits (repetition being allowed) is: \(n^{n-1}\)*(sum of the digits)*(111…..n times).

Hope it helps.



Hi Bunuel,

Can we say that the sum of the numbers will be 1111 to 4444 ? since the repetition of the digits are allowed. I think this range would cover all the numbers. Then we can simply use the formula for arithmetic mean to calculate the sum ? Please correct my thinking if wrong.



All the numbers which are formed lies between 1111 and 4444 but it does not include all numbers from 1111 to 4444. For example, 1235 will not be formed as we have only 1,2,3,4 to choose from. Thus, we can't use the formula of arithmetic mean.

Hope it clears your doubt!!

Kudos if it does!!!
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 34475
Followers: 6287

Kudos [?]: 79770 [0], given: 10022

Re: Can someone help? [#permalink]

Show Tags

New post 20 May 2014, 00:10
Expert's post
1
This post was
BOOKMARKED
gauravsoni wrote:
Bunuel wrote:
dimitri92 wrote:
I am sorry I don't have the OA. But I think it is solvable without the OA

What is the sum of all 4-digit numbers that can be formed using the digits 1,2,3,4 where repetition of digits is allowed?


As each digit of four digit number (abcd) can take 4 options (1, 2, 3, 4) total there can be 4^4 numbers.

Obviously each digit (a, b, c, and d) will take the value of 1, 2, 3, 4 equal number of times, so each digit will take the value of 1, 2, 3, 4 - \(\frac{4^4}{4}=4^3=64\) times: units digit will take the values of 1, 2, 3, 4 - 64 times and the same with tens, hundreds, thousands digits.

So the sum would be 64*(1+2+3+4)+64*10*(1+2+3+4)+64*100*(1+2+3+4)+64*1000*(1+2+3+4)=64*10*(1+10+100+1000)=711040.

Actually there is the direct formula for this kind of problems. Of course it's better to understand the concept, then to memorize the formula but in case someone is interested here it is:

1. Sum of all the numbers which can be formed by using the \(n\) digits without repetition is: (n-1)!*(sum of the digits)*(111…..n times).

2. Sum of all the numbers which can be formed by using the \(n\) digits (repetition being allowed) is: \(n^{n-1}\)*(sum of the digits)*(111…..n times).

Hope it helps.



Hi Bunuel,

Can we say that the sum of the numbers will be 1111 to 4444 ? since the repetition of the digits are allowed. I think this range would cover all the numbers. Then we can simply use the formula for arithmetic mean to calculate the sum ? Please correct my thinking if wrong.


Yes, the numbers range from 1111 to 4444: 1111, 1112, 1113, 1114, 1121, 1121, ..., 4444. But the numbers are NOT evenly spaced so you cannot get the sum by multiplying the mean by the number of terms.

Does this make sense?
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
avatar
Joined: 05 Feb 2014
Posts: 48
Followers: 0

Kudos [?]: 13 [0], given: 49

Re: Can someone help? [#permalink]

Show Tags

New post 20 May 2014, 19:53
Bunuel wrote:
Bunuel wrote:
dimitri92 wrote:
I am sorry I don't have the OA. But I think it is solvable without the OA

What is the sum of all 4-digit numbers that can be formed using the digits 1,2,3,4 where repetition of digits is allowed?


As each digit of four digit number (abcd) can take 4 options (1, 2, 3, 4) total there can be 4^4 numbers.

Obviously each digit (a, b, c, and d) will take the value of 1, 2, 3, 4 equal number of times, so each digit will take the value of 1, 2, 3, 4 - \(\frac{4^4}{4}=4^3=64\) times: units digit will take the values of 1, 2, 3, 4 - 64 times and the same with tens, hundreds, thousands digits.

So the sum would be 64*(1+2+3+4)+64*10*(1+2+3+4)+64*100*(1+2+3+4)+64*1000*(1+2+3+4)=64*10*(1+10+100+1000)=711040.

Actually there is the direct formula for this kind of problems. Of course it's better to understand the concept, then to memorize the formula but in case someone is interested here it is:

1. Sum of all the numbers which can be formed by using the \(n\) digits without repetition is: (n-1)!*(sum of the digits)*(111…..n times).

2. Sum of all the numbers which can be formed by using the \(n\) digits (repetition being allowed) is: \(n^{n-1}\)*(sum of the digits)*(111…..n times).

Hope it helps.



Hi Bunuel,

Can we say that the sum of the numbers will be 1111 to 4444 ? since the repetition of the digits are allowed. I think this range would cover all the numbers. Then we can simply use the formula for arithmetic mean to calculate the sum ? Please correct my thinking if wrong.


Yes, the numbers range from 1111 to 4444: 1111, 1112, 1113, 1114, 1121, 1121, ..., 4444. But the numbers are NOT evenly spaced so you cannot get the sum by multiplying the mean by the number of terms.

Does this make sense?[/quote]


Ah yes , got it thanks.
Manager
Manager
avatar
Joined: 18 Sep 2014
Posts: 186
Followers: 0

Kudos [?]: 8 [0], given: 5

Reviews Badge CAT Tests
Re: What is the sum of all 4-digit numbers that can be formed [#permalink]

Show Tags

New post 27 Mar 2015, 02:35
dimitri92 wrote:
I am sorry I don't have the OA. But I think it is solvable without the OA

What is the sum of all 4-digit numbers that can be formed using the digits 1,2,3,4 where repetition of digits is allowed?


As each digit of four digit number (abcd) can take 4 options (1, 2, 3, 4) total there can be 4^4 numbers.

Obviously each digit (a, b, c, and d) will take the value of 1, 2, 3, 4 equal number of times, so each digit will take the value of 1, 2, 3, 4 - \(\frac{4^4}{4}=4^3=64\) times: units digit will take the values of 1, 2, 3, 4 - 64 times and the same with tens, hundreds, thousands digits.

So the sum would be 64*(1+2+3+4)+64*10*(1+2+3+4)+64*100*(1+2+3+4)+64*1000*(1+2+3+4)=64*10*(1+10+100+1000)=711040.

Actually there is the direct formula for this kind of problems. Of course it's better to understand the concept, then to memorize the formula but in case someone is interested here it is:

1. Sum of all the numbers which can be formed by using the \(n\) digits without repetition is: (n-1)!*(sum of the digits)*(111…..n times).

2. Sum of all the numbers which can be formed by using the \(n\) digits (repetition being allowed) is: \(n^{n-1}\)*(sum of the digits)*(111…..n times).

Hope it helps.[/quote]


Hi Bunuel,

Can we say that the sum of the numbers will be 1111 to 4444 ? since the repetition of the digits are allowed. I think this range would cover all the numbers. Then we can simply use the formula for arithmetic mean to calculate the sum ? Please correct my thinking if wrong.[/quote]

Yes, the numbers range from 1111 to 4444: 1111, 1112, 1113, 1114, 1121, 1121, ..., 4444. But the numbers are NOT evenly spaced so you cannot get the sum by multiplying the mean by the number of terms.

Does this make sense?[/quote]

I am no Math Expert. Can you please correct my below approach?
We know the smallest number we can make is 1111 and the largest number we can
make is 4444.
We also know that our numbers will be evenly distributed in the middle (i. e. 1112 is
balanced by 4443; 1113 is balanced by 4442). So, we can solve using the average
formula.
Finally, we know that there are 4*4*4*4 = 256 numbers in our set.
Average = sum of terms/# of terms
sum of terms = average * # of terms
sum of terms = (1111+4444)/2 * 256 = 5555/2 * 256 = 5555*128 = 711040
_________________

Kindly press the Kudos to appreciate my post !! :-)

Intern
Intern
avatar
Joined: 28 Apr 2015
Posts: 1
GMAT 1: 570 Q43 V25
GMAT 2: 700 Q46 V40
Followers: 0

Kudos [?]: 0 [0], given: 23

Re: What is the sum of all 4-digit numbers that can be formed [#permalink]

Show Tags

New post 26 Jul 2015, 16:13
Bunuel wrote:
dimitri92 wrote:
I am sorry I don't have the OA. But I think it is solvable without the OA

What is the sum of all 4-digit numbers that can be formed using the digits 1,2,3,4 where repetition of digits is allowed?


As each digit of four digit number (abcd) can take 4 options (1, 2, 3, 4) total there can be 4^4 numbers.

Obviously each digit (a, b, c, and d) will take the value of 1, 2, 3, 4 equal number of times, so each digit will take the value of 1, 2, 3, 4 - \(\frac{4^4}{4}=4^3=64\) times: units digit will take the values of 1, 2, 3, 4 - 64 times and the same with tens, hundreds, thousands digits.

So the sum would be 64*(1+2+3+4)+64*10*(1+2+3+4)+64*100*(1+2+3+4)+64*1000*(1+2+3+4)=64*10*(1+10+100+1000)=711040.

Actually there is the direct formula for this kind of problems. Of course it's better to understand the concept, then to memorize the formula but in case someone is interested here it is:

1. Sum of all the numbers which can be formed by using the \(n\) digits without repetition is: (n-1)!*(sum of the digits)*(111…..n times).

2. Sum of all the numbers which can be formed by using the \(n\) digits (repetition being allowed) is: \(n^{n-1}\)*(sum of the digits)*(111…..n times).

Hope it helps.


Did you mean "1111"? (highlighted in red)
Expert Post
EMPOWERgmat Instructor
User avatar
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 7190
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: 340 Q170 V170
Followers: 313

Kudos [?]: 2131 [0], given: 161

Re: What is the sum of all 4-digit numbers that can be formed [#permalink]

Show Tags

New post 28 Jul 2015, 20:59
Hi All,

While much of this discussion is over a year old, it's important to note how important it is to include the 5 answer choices to any PS question. The GMAT only rarely offers questions that can only be solved by 'doing math in one specific way', which means that there are normally several different ways to approach each question. By having the answer choices to work with, we can sometimes avoid doing math altogether (since can use estimation or logic to determine that certain answers are 'too small' or 'too big' to be correct).

Here, by not including the 5 answer choices, the original poster forces us to do math, when a more elegant, simpler or faster approach might have been possible.

GMAT assassins aren't born, they're made,
Rich
_________________

Rich Cohen

Co-Founder & GMAT Assassin

Special Offer: Save $75 + GMAT Club Tests

60-point improvement guarantee
www.empowergmat.com/

***********************Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!***********************

Manager
Manager
avatar
Joined: 09 Aug 2015
Posts: 99
GMAT 1: 770 Q51 V44
GPA: 2.3
Followers: 0

Kudos [?]: 17 [0], given: 6

Re: What is the sum of all 4-digit numbers that can be formed [#permalink]

Show Tags

New post 20 Aug 2015, 18:15
Here is an alternative solution that you can compute easily on the GMAT if given this question:

First, note that the smallest number you can make is 1111, the largest is 4444. It is reasonable to conclude that the average of all the combinations of digits (1,2,3,4) very close to the average of 1111+4444, which is 5555/2.

Next, compute the possibilities: 4*4*4*4 = 16*16 = 256 (memorize this). 4*4*4*4.

Now all you have to do is compute 256 * 5555 / 2.
Re: What is the sum of all 4-digit numbers that can be formed   [#permalink] 20 Aug 2015, 18:15
    Similar topics Author Replies Last post
Similar
Topics:
3 Experts publish their posts in the topic How many 4-digit numbers (ABCD) can be formed such that |A – D| = 2? 2 Bunuel 7 08 Apr 2016, 02:48
32 How many 4-digit numbers can be formed by using the digits 0 tabsang 12 16 Dec 2012, 05:40
15 Experts publish their posts in the topic How many even 4-digit numbers can be formed, so that the jusjmkol740 7 06 Jun 2010, 09:01
14 What is the sum of all 3 digit positive integers that can be formed us R2I4D 6 30 Dec 2009, 03:29
46 Experts publish their posts in the topic What is the sum of all 3 digit positive integers that can be formed sdrandom1 21 28 Jun 2009, 19:01
Display posts from previous: Sort by

What is the sum of all 4-digit numbers that can be formed

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.