Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
Re: Help needed.......Quant [#permalink]
25 Aug 2011, 16:10
I think there is some problem with either the values in the ques stem or the ans choices. something is wrong. What is the source of this ques? _________________
Happy Learning ! :D
Show Thanks to fellow members with Kudos its shows your appreciation and its free
Re: Help needed.......Quant [#permalink]
31 Aug 2011, 21:51
Expert's post
siddharthvaid wrote:
Q. What is the value of 11x-11(x^+2) where x is the largest integer such that 11x is a factor of 30030?
a) -1331 b) -1320 c) -121 d) -120 e) -1
The given expression is \(11x - 11x^2\) = \(11x (1 - x)\)
11x needs to be factor of 30030 and x needs to be the largest integer possible. This means 11x needs to be the largest factor possible. The largest factor of a number is the number itself. The largest factor of 30030 is 30030 = (11 * 2730) x must be 2730
The value of 11x(1-x) = 30030*(-2729) There is definitely something wrong in the expression, either in the book or in this particular reproduction. _________________
Re: What is the value of 11^x-11^(x+2) where x is the largest [#permalink]
14 Jul 2012, 02:32
1
This post received KUDOS
Expert's post
pavanpuneet wrote:
how did we infer that x=1?
We have that \(30,030=2*3*5*7*11*13\) is divisible by \(11^x\) (where \(x\) is an integer). Now, ask yourself what can be the largest integer value of \(x\). Could it be 2 or more? _________________
Re: What is the value of 11^x-11^(x+2) where x is the largest [#permalink]
05 Nov 2012, 03:53
Here 30030/11 gives 2730. This cannot be divided further and hence 11 can have the power of only 1. substituting in the given equation gives the ans -1320. _________________
I've failed over and over and over again in my life and that is why I succeed--Michael Jordan Kudos drives a person to better himself every single time. So Pls give it generously Wont give up till i hit a 700+
Re: What is the value of 11^x-11^(x+2) where x is the largest [#permalink]
10 Dec 2012, 05:56
Given x is the largest integer 30030
Find the Value of 11^x - 11^(x + 2)
Simplify 11^x - 11^(x + 2) we get (11^x)(1-11^2) -> (11^x)(1-11)(1+11) -> (11^x)(-10)(12)
Elimination (11^x)(-10)(12) 1.From this we know that the value has to be -ve 2.The units digit must be a 0.
Hence eliminate options A,C,E. Now we are left with B and D
Look at the equation again (11^x)(-10)(12) -> (11^x)(-120) Now in option D we have -120 this can possible only if x is the above equation is 0. However we are told that 11^X is a factor of 30030. So x has to be greater than 0. Which eliminates the option D.
Re: What is the value of 11^x-11^(x+2) where x is the largest [#permalink]
10 Dec 2012, 06:21
Expert's post
maddyboiler wrote:
Given x is the largest integer 30030
Find the Value of 11^x - 11^(x + 2)
Simplify 11^x - 11^(x + 2) we get (11^x)(1-11^2) -> (11^x)(1-11)(1+11) -> (11^x)(-10)(12)
Elimination (11^x)(-10)(12) 1.From this we know that the value has to be -ve 2.The units digit must be a 0.
Hence eliminate options A,C,E. Now we are left with B and D
Look at the equation again (11^x)(-10)(12) -> (11^x)(-120) Now in option D we have -120 this can possible only if x is the above equation is 0. However we are told that 11^X is a factor of 30030. So x has to be greater than 0. Which eliminates the option D.
Answer is B
11^x would be a factor of 30,030 even if x=0, since 11^0=1 and 1 is a factor of every integer. The point is that we are looking for the largest possible value of integer x such that 11^x is a factor of 30,030, which is for x=1.
Re: What is the value of 11^x-11^(x+2) where x is the largest [#permalink]
10 Dec 2012, 07:09
Agree. So just to make sure we can see if 30030 is divisible by 11. If it is then we really dont care by how much because we know that x is not 0 now. So the only option we are left with is now B.
You know what’s worse than getting a ding at one of your dreams schools . Yes its getting that horrid wait-listed email . This limbo is frustrating as hell . Somewhere...
As I’m halfway through my second year now, graduation is now rapidly approaching. I’ve neglected this blog in the last year, mainly because I felt I didn’...
Wow! MBA life is hectic indeed. Time flies by. It is hard to keep track of the time. Last week was high intense training Yeah, Finance, Accounting, Marketing, Economics...