Find all School-related info fast with the new School-Specific MBA Forum

It is currently 29 Sep 2016, 07:20
GMAT Club Tests

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

What is the volume of a certain rectangular solid?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Director
Director
avatar
Status: Apply - Last Chance
Affiliations: IIT, Purdue, PhD, TauBetaPi
Joined: 18 Jul 2010
Posts: 690
Schools: Wharton, Sloan, Chicago, Haas
WE 1: 8 years in Oil&Gas
Followers: 15

Kudos [?]: 143 [0], given: 15

Re: OG-12 DS # 122 [#permalink]

Show Tags

New post 01 Sep 2010, 07:45
If I refer to your drawing above. Blue face=15 Yellow face=24 and Red face=40. Bunuel, may be its just the wording that I don't understand:

"(1) Two adjacent faces of the solid have areas 15 and 24, respectively" means two faces have areas 15 and 24. We could say it ourselves that there will be two faces with these areas which are adjacent. How else?

>> I took this statement to mean this: Two adjacent faces could refer to: Red+Blue, Red+Yellow, Blue+Yellow. The assumption is that all faces are treated equal. Clearly, not all adjacent faces have area 15,24.

"(2) Each of two opposite faces of the solid has area 40" means that one pair of opposite faces has an area 40.

>> Each of two opposite faces = 40 to me means any opposite faces =40. I can understand if it said one pair, but I am not sure if "each of two" means "one pair". Clearly not all opposite faces have area = 40.

Thanks for your time and help.
_________________

Consider kudos, they are good for health

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 34899
Followers: 6497

Kudos [?]: 83027 [0], given: 10134

Re: OG-12 DS # 122 [#permalink]

Show Tags

New post 01 Sep 2010, 07:49
mainhoon wrote:
If I refer to your drawing above. Blue face=15 Yellow face=24 and Red face=40. Bunuel, may be its just the wording that I don't understand:

"(1) Two adjacent faces of the solid have areas 15 and 24, respectively" means two faces have areas 15 and 24. We could say it ourselves that there will be two faces with these areas which are adjacent. How else?

>> I took this statement to mean this: Two adjacent faces could refer to: Red+Blue, Red+Yellow, Blue+Yellow. The assumption is that all faces are treated equal. Clearly, not all adjacent faces have area 15,24.

"(2) Each of two opposite faces of the solid has area 40" means that one pair of opposite faces has an area 40.

>> Each of two opposite faces = 40 to me means any opposite faces =40. I can understand if it said one pair, but I am not sure if "each of two" means "one pair". Clearly not all opposite faces have area = 40.

Thanks for your time and help.


Yes you understanding of wording is wrong. The question means exactly what I wrote.
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
avatar
Joined: 06 Jan 2012
Posts: 28
Concentration: Finance, General Management
GMAT Date: 04-16-2012
GPA: 3
WE: Information Technology (Computer Software)
Followers: 2

Kudos [?]: 23 [0], given: 3

Re: OG-12 DS # 122 [#permalink]

Show Tags

New post 16 Jan 2012, 21:07
From the question, we do not know if the rectangular solid is a cube or a cuboid.

Fact 1 - Two adjacent faces of the solid have areas 15 and 24, respectively => This implies that the rectangular solid is a cuboid. We need to know the length of all 3 sides to calculate the volume. From the 2 adjacent face areas (15 & 24), we do not exactly know the length of the sides. If the sides are a, b & c => two adjacent faces could be made up of (a,b) and (b,c) OR (a,c) and (b,c).

Either way we cannot conclusively calculate all the 3 sides. (BCE)

Fact 2 - Each of the two opposite faces of the solid has area 40. Firstly this is infact a little confusing. I go as far as to think that all the faces have an area of 40. But I strongly believe in GMAC's ability to NOT confuse people and only give relevant information. So since the first fact dealt with adjacent faces, the 2nd fact deals with opposite faces. Opposite faces of a rectangular solid MUST have the same area but with this fact, we do not know which face we are talking about - just that one of the faces has an area of 40. And also that its opposite face is also 40 (which goes without saying!) And we still do not know the length of the sides that make up this face lest all the 3 sides. (1 X 40 = 40 OR 5 X 8 = 40). So this too is insufficient. (CE)

Combining both statements => we now know all the 3 face areas. 15, 24, and 40.

Say sides are a, b, c then

ab=15
bc=24
ac=40

Volume = abc
Multiply all 3 values ab X bc X ac = (abc)^2 = (15 x 24 x 40) = whatever it is, we can calculate the value of abc, the volume.

So the answer is C.

I went back to the forums to confirm my method but yes most of them agree that the 2nd fact is confusing. And the explanation in the OG for the 2nd fact is that "...the volume is (5)(8)(x), which will vary as x varies.." - I think this is their way of saying that we only know the area of one face.

Hope this helps!
Intern
Intern
avatar
Joined: 14 Feb 2012
Posts: 40
Location: Germany
Concentration: Technology, Strategy
GMAT Date: 06-13-2012
Followers: 0

Kudos [?]: 34 [0], given: 13

Re: OG-12 DS # 122 [#permalink]

Show Tags

New post 29 Apr 2012, 03:39
Bunuel wrote:
This question is from Official Guide and Official Answer is C.

To show how it can be done: multiply these 3 equations --> \(l^2*h^2*d^2=(l*h*d)^2=15*24*40=24^2*5^2\) --> \(V=l*h*d=24*5=120\).

Answer: C.

Hope it helps.


hey, can anyone describe this last step? whats the rule for that or where does it come from?

Thanks
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 34899
Followers: 6497

Kudos [?]: 83027 [0], given: 10134

Re: OG-12 DS # 122 [#permalink]

Show Tags

New post 29 Apr 2012, 05:43
andih wrote:
Bunuel wrote:
This question is from Official Guide and Official Answer is C.

To show how it can be done: multiply these 3 equations --> \(l^2*h^2*d^2=(l*h*d)^2=15*24*40=24^2*5^2\) --> \(V=l*h*d=24*5=120\).

Answer: C.

Hope it helps.


hey, can anyone describe this last step? whats the rule for that or where does it come from?

Thanks


Do you mean multiplying?

If a=2, b=3, and c=4 then abc=2*3*4=24.
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
avatar
Joined: 15 Sep 2012
Posts: 19
Followers: 0

Kudos [?]: 2 [0], given: 36

Re: What is the volume of a certain rectangular solid? [#permalink]

Show Tags

New post 22 Jul 2013, 14:00
I am confused. Why can't we solve the volume with (1)?

Area of 2 sides is given: 15 and 24. That means they share a side and shouldn't the side be 3?

15: {1,15}, {3,5}
24: {1,24}, {2,12}, {3,8}, {4,6}

therefore the sides are 3, 5, and 8 and the volume is 3x5x8=120
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 34899
Followers: 6497

Kudos [?]: 83027 [0], given: 10134

Re: What is the volume of a certain rectangular solid? [#permalink]

Show Tags

New post 22 Jul 2013, 14:03
bugzor wrote:
I am confused. Why can't we solve the volume with (1)?

Area of 2 sides is given: 15 and 24. That means they share a side and shouldn't the side be 3?

15: {1,15}, {3,5}
24: {1,24}, {2,12}, {3,8}, {4,6}

therefore the sides are 3, 5, and 8 and the volume is 3x5x8=120


Please check here: what-is-the-volume-of-a-certain-rectangular-solid-90748.html#p772095 Notice that there are examples given showing that we can have more than one answer.

Hope it helps.
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
avatar
Joined: 15 Sep 2012
Posts: 19
Followers: 0

Kudos [?]: 2 [0], given: 36

Re: What is the volume of a certain rectangular solid? [#permalink]

Show Tags

New post 22 Jul 2013, 14:05
Bunuel wrote:
bugzor wrote:
I am confused. Why can't we solve the volume with (1)?

Area of 2 sides is given: 15 and 24. That means they share a side and shouldn't the side be 3?

15: {1,15}, {3,5}
24: {1,24}, {2,12}, {3,8}, {4,6}

therefore the sides are 3, 5, and 8 and the volume is 3x5x8=120


Please check here: what-is-the-volume-of-a-certain-rectangular-solid-90748.html#p772095 Notice that there are examples given showing that we can have more than one answer.

Hope it helps.


Oh! I totally overlooked side=1. thanks
Senior Manager
Senior Manager
User avatar
Joined: 13 May 2013
Posts: 472
Followers: 3

Kudos [?]: 144 [0], given: 134

Re: OG-12 DS # 122 [#permalink]

Show Tags

New post 10 Dec 2013, 09:35
Hi Bunuel,

I understand everything you have done right up until the point where you solve 1+2) Wouldn't the equation be (15*40*24)^2?

Bunuel wrote:
This question is from Official Guide and Official Answer is C.

About rectangular solid:
Attachment:
800px-Cuboid.png

In a rectangular solid, all angles are right angles, and opposite faces are equal, so rectangular solid can have maximum 3 different areas of its faces, on the diagram: yellow, green and red faces can have different areas. I say at max, as for example rectangular solid can be a cube and in this case it'll have all faces equal, also it's possible to have only 2 different areas of the faces, for example when the base is square and the height does not equals to the side of this square.

Volume of rectangular solid is Volume=Length*Height*Depth.

BACK TO THE ORIGINAL QUESTION:

What is the volume of a certain rectangular solid?

(1) Two adjacent faces of the solid have areas 15 and 24, respectively --> let the two adjacent faces be blue and yellow faces on the diagram --> \(blue=d*h=15\) and \(yellow=l*h=24\) --> we have 2 equations with 3 unknowns, not sufficient to calculate the value of each or the product of the unknowns (\(V=l*h*d\)).

To elaborate more:
If \(blue=d*h=15*1=15\) and \(yellow=l*h=24*1=24\) then \(V=l*h*d=24*1*15=360\);
If \(blue=d*h=5*3=15\) and \(yellow=l*h=8*3=24\) then \(V=l*h*d=8*3*5=90\).

Two different answer, hence not sufficient.

(2) Each of two opposite faces of the solid has area 40 --> just gives the are of two opposite faces, so clearly insufficient.

(1)+(2) From (1): \(blue=d*h=15\), \(yellow=l*h=24\) and from (2) each of two opposite faces of the solid has area 40, so it must be the red one: \(red=d*l=40\) --> here we have 3 distinct linear equations with 3 unknowns hence we can find the values of each and thus can calculate \(V=l*h*d\). Sufficient.

To show how it can be done: multiply these 3 equations --> \(l^2*h^2*d^2=(l*h*d)^2=15*24*40=24^2*5^2\) --> \(V=l*h*d=24*5=120\).

Answer: C.

Hope it helps.

Last edited by WholeLottaLove on 10 Dec 2013, 09:41, edited 1 time in total.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 34899
Followers: 6497

Kudos [?]: 83027 [0], given: 10134

Re: OG-12 DS # 122 [#permalink]

Show Tags

New post 10 Dec 2013, 09:41
WholeLottaLove wrote:
Hi Bunuel,

I understand everything you have done right up until the point where you solve 1+2) Could you elaborate a bit?

Bunuel wrote:
This question is from Official Guide and Official Answer is C.

About rectangular solid:
Attachment:
800px-Cuboid.png

In a rectangular solid, all angles are right angles, and opposite faces are equal, so rectangular solid can have maximum 3 different areas of its faces, on the diagram: yellow, green and red faces can have different areas. I say at max, as for example rectangular solid can be a cube and in this case it'll have all faces equal, also it's possible to have only 2 different areas of the faces, for example when the base is square and the height does not equals to the side of this square.

Volume of rectangular solid is Volume=Length*Height*Depth.

BACK TO THE ORIGINAL QUESTION:

What is the volume of a certain rectangular solid?

(1) Two adjacent faces of the solid have areas 15 and 24, respectively --> let the two adjacent faces be blue and yellow faces on the diagram --> \(blue=d*h=15\) and \(yellow=l*h=24\) --> we have 2 equations with 3 unknowns, not sufficient to calculate the value of each or the product of the unknowns (\(V=l*h*d\)).

To elaborate more:
If \(blue=d*h=15*1=15\) and \(yellow=l*h=24*1=24\) then \(V=l*h*d=24*1*15=360\);
If \(blue=d*h=5*3=15\) and \(yellow=l*h=8*3=24\) then \(V=l*h*d=8*3*5=90\).

Two different answer, hence not sufficient.

(2) Each of two opposite faces of the solid has area 40 --> just gives the are of two opposite faces, so clearly insufficient.

(1)+(2) From (1): \(blue=d*h=15\), \(yellow=l*h=24\) and from (2) each of two opposite faces of the solid has area 40, so it must be the red one: \(red=d*l=40\) --> here we have 3 distinct linear equations with 3 unknowns hence we can find the values of each and thus can calculate \(V=l*h*d\). Sufficient.

To show how it can be done: multiply these 3 equations --> \(l^2*h^2*d^2=(l*h*d)^2=15*24*40=24^2*5^2\) --> \(V=l*h*d=24*5=120\).

Answer: C.

Hope it helps.


When we combine the statements we have:
\(blue=d*h=15\).

\(yellow=l*h=24\).

\(red=d*l=40\).

Multiply these 3 equations --> \(l^2*h^2*d^2=(l*h*d)^2=15*24*40=24^2*5^2\) --> \(V=l*h*d=24*5=120\).

Hope it's clear.
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Senior Manager
Senior Manager
User avatar
Joined: 13 May 2013
Posts: 472
Followers: 3

Kudos [?]: 144 [0], given: 134

Re: OG-12 DS # 122 [#permalink]

Show Tags

New post 10 Dec 2013, 09:45
Hello,

I tried to edit my question in time to better specify my question. I see that in 1 and 2 there are two equations with three unknowns whereas here, we have equations for length, depth, height. You multiply 15*40*24 but according to your formula, don't you multiply them together then square that result? Then how do you go from 24^2*5^2 to 24*5? I see that you take the root but why is that done and how in the context of this problem?

Thanks!

Bunuel wrote:
WholeLottaLove wrote:
Hi Bunuel,

I understand everything you have done right up until the point where you solve 1+2) Could you elaborate a bit?

Bunuel wrote:
This question is from Official Guide and Official Answer is C.

About rectangular solid:
Attachment:
800px-Cuboid.png

In a rectangular solid, all angles are right angles, and opposite faces are equal, so rectangular solid can have maximum 3 different areas of its faces, on the diagram: yellow, green and red faces can have different areas. I say at max, as for example rectangular solid can be a cube and in this case it'll have all faces equal, also it's possible to have only 2 different areas of the faces, for example when the base is square and the height does not equals to the side of this square.

Volume of rectangular solid is Volume=Length*Height*Depth.

BACK TO THE ORIGINAL QUESTION:

What is the volume of a certain rectangular solid?

(1) Two adjacent faces of the solid have areas 15 and 24, respectively --> let the two adjacent faces be blue and yellow faces on the diagram --> \(blue=d*h=15\) and \(yellow=l*h=24\) --> we have 2 equations with 3 unknowns, not sufficient to calculate the value of each or the product of the unknowns (\(V=l*h*d\)).

To elaborate more:
If \(blue=d*h=15*1=15\) and \(yellow=l*h=24*1=24\) then \(V=l*h*d=24*1*15=360\);
If \(blue=d*h=5*3=15\) and \(yellow=l*h=8*3=24\) then \(V=l*h*d=8*3*5=90\).

Two different answer, hence not sufficient.

(2) Each of two opposite faces of the solid has area 40 --> just gives the are of two opposite faces, so clearly insufficient.

(1)+(2) From (1): \(blue=d*h=15\), \(yellow=l*h=24\) and from (2) each of two opposite faces of the solid has area 40, so it must be the red one: \(red=d*l=40\) --> here we have 3 distinct linear equations with 3 unknowns hence we can find the values of each and thus can calculate \(V=l*h*d\). Sufficient.

To show how it can be done: multiply these 3 equations --> \(l^2*h^2*d^2=(l*h*d)^2=15*24*40=24^2*5^2\) --> \(V=l*h*d=24*5=120\).

Answer: C.

Hope it helps.


When we combine the statements we have:
\(blue=d*h=15\)
\(yellow=l*h=24\)
\(red=d*l=40\)

Multiply these 3 equations --> \(l^2*h^2*d^2=(l*h*d)^2=15*24*40=24^2*5^2\) --> \(V=l*h*d=24*5=120\).

Hope it's clear.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 34899
Followers: 6497

Kudos [?]: 83027 [0], given: 10134

Re: OG-12 DS # 122 [#permalink]

Show Tags

New post 10 Dec 2013, 09:52
WholeLottaLove wrote:
Hello,

I tried to edit my question in time to better specify my question. I see that in 1 and 2 there are two equations with three unknowns whereas here, we have equations for length, depth, height. You multiply 15*40*24 but according to your formula, don't you multiply them together then square that result? Then how do you go from 24^2*5^2 to 24*5? I see that you take the root but why is that done and how in the context of this problem?

Thanks!

Bunuel wrote:
WholeLottaLove wrote:
Hi Bunuel,

I understand everything you have done right up until the point where you solve 1+2) Could you elaborate a bit?



When we combine the statements we have:
\(blue=d*h=15\)
\(yellow=l*h=24\)
\(red=d*l=40\)

Multiply these 3 equations --> \(l^2*h^2*d^2=(l*h*d)^2=15*24*40=24^2*5^2\) --> \(V=l*h*d=24*5=120\).

Hope it's clear.


\(Volume=l*h*d\).

Now, if you multiply the 3 equations we have we get \(l^2*h^2*d^2*=(lhd)^2=15*24*40=24^2*5^2\) --> \(Volume=l*h*d\), thus the volume is the square root of \((lhd)^2=24^2*5^2\), so 24*5=120.

Hope it's clear.
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Senior Manager
Senior Manager
avatar
Joined: 28 Apr 2014
Posts: 291
Followers: 1

Kudos [?]: 33 [0], given: 46

GMAT ToolKit User
Re: OG-12 DS # 122 [#permalink]

Show Tags

New post 18 May 2014, 06:50
Bunuel wrote:
mainhoon wrote:
If I refer to your drawing above. Blue face=15 Yellow face=24 and Red face=40. Bunuel, may be its just the wording that I don't understand:

"(1) Two adjacent faces of the solid have areas 15 and 24, respectively" means two faces have areas 15 and 24. We could say it ourselves that there will be two faces with these areas which are adjacent. How else?

>> I took this statement to mean this: Two adjacent faces could refer to: Red+Blue, Red+Yellow, Blue+Yellow. The assumption is that all faces are treated equal. Clearly, not all adjacent faces have area 15,24.

"(2) Each of two opposite faces of the solid has area 40" means that one pair of opposite faces has an area 40.

>> Each of two opposite faces = 40 to me means any opposite faces =40. I can understand if it said one pair, but I am not sure if "each of two" means "one pair". Clearly not all opposite faces have area = 40.

Thanks for your time and help.


Yes you understanding of wording is wrong. The question means exactly what I wrote.



Hi Bunuel

On hindsight and after seeing the OG , we can say that the answer is C but the option does sound a confusing .. Shouldn't it have been ' " One of the two opposite faces of the solid has area = 40." By qualifying as each , doesn't it cover each of the 3 pair of faces thus all 6 faces ?
Intern
Intern
avatar
Joined: 24 May 2013
Posts: 29
Concentration: Operations, General Management
WE: Engineering (Energy and Utilities)
Followers: 2

Kudos [?]: 13 [0], given: 21

Re: What is the volume of a certain rectangular solid? [#permalink]

Show Tags

New post 04 Jun 2014, 03:00
Hi bunuel,
Though your explanation is correct but st#2 is confusing
It says:
Each of two opposite faces of the solid has area 40.

"Each" has area 40. It means from your fig, Red will have area =40 , but Blue face and (opposite to it face) both can also have area 40..

Thats how it is confusing. Can you clarify
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 34899
Followers: 6497

Kudos [?]: 83027 [0], given: 10134

Re: What is the volume of a certain rectangular solid? [#permalink]

Show Tags

New post 04 Jun 2014, 03:12
nidhi12 wrote:
Hi bunuel,
Though your explanation is correct but st#2 is confusing
It says:
Each of two opposite faces of the solid has area 40.

"Each" has area 40. It means from your fig, Red will have area =40 , but Blue face and (opposite to it face) both can also have area 40..

Thats how it is confusing. Can you clarify


Does it matter which two opposite faces have the area 40?

"Each of two opposite faces of the solid has area 40" means that one pair of opposite faces has area 40.
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
avatar
Joined: 19 Jan 2014
Posts: 31
Followers: 0

Kudos [?]: 16 [0], given: 51

GMAT ToolKit User
Re: What is the volume of a certain rectangular solid? [#permalink]

Show Tags

New post 21 Jun 2014, 18:21
tingle15 wrote:
Yes, the second statement is confusing but the catch is in the question itself. The question states a rectangular solid. All the faces cannot have an area of 40 if the solid is rectangular.



Well explained. But yes, the second statement is very confusing. I get it now though. But it's intentionally tricky, or just poorly worded.
SVP
SVP
avatar
Joined: 17 Jul 2014
Posts: 1734
Location: United States
Schools: Stanford '19
GMAT 1: 550 Q39 V27
GMAT 2: 560 Q42 V26
GMAT 3: 560 Q43 V24
GMAT 4: 650 Q49 V30
GPA: 3.56
WE: General Management (Transportation)
Followers: 14

Kudos [?]: 205 [0], given: 113

GMAT ToolKit User Premium Member Reviews Badge
What is the volume of a certain rectangular solid? [#permalink]

Show Tags

New post 30 Oct 2014, 10:05
how is a cube not a rectangular solid?
why should we look at statement 1 when analyzing statement 2?
from what I know, we do not have to confuse between statements when analyzing only one statement!!!
Manager
Manager
avatar
Joined: 17 Mar 2014
Posts: 92
Followers: 0

Kudos [?]: 34 [0], given: 197

GMAT ToolKit User
Re: What is the volume of a certain rectangular solid? [#permalink]

Show Tags

New post 01 Nov 2014, 04:27
Bunuel wrote:
This question is from Official Guide and Official Answer is C.

About rectangular solid:
Attachment:
800px-Cuboid.png

In a rectangular solid, all angles are right angles, and opposite faces are equal, so rectangular solid can have maximum 3 different areas of its faces, on the diagram: yellow, green and red faces can have different areas. I say at max, as for example rectangular solid can be a cube and in this case it'll have all faces equal, also it's possible to have only 2 different areas of the faces, for example when the base is square and the height does not equals to the side of this square.

Volume of rectangular solid is Volume=Length*Height*Depth.

BACK TO THE ORIGINAL QUESTION:

What is the volume of a certain rectangular solid?

(1) Two adjacent faces of the solid have areas 15 and 24, respectively --> let the two adjacent faces be blue and yellow faces on the diagram --> \(blue=d*h=15\) and \(yellow=l*h=24\) --> we have 2 equations with 3 unknowns, not sufficient to calculate the value of each or the product of the unknowns (\(V=l*h*d\)).

To elaborate more:
If \(blue=d*h=15*1=15\) and \(yellow=l*h=24*1=24\) then \(V=l*h*d=24*1*15=360\);
If \(blue=d*h=5*3=15\) and \(yellow=l*h=8*3=24\) then \(V=l*h*d=8*3*5=90\).

Two different answer, hence not sufficient.

(2) Each of two opposite faces of the solid has area 40 --> just gives the areas of two opposite faces, so clearly insufficient.

(1)+(2) From (1): \(blue=d*h=15\), \(yellow=l*h=24\) and from (2) each of two opposite faces of the solid has area 40, so it must be the red one: \(red=d*l=40\) --> here we have 3 distinct linear equations with 3 unknowns hence we can find the values of each and thus can calculate \(V=l*h*d\). Sufficient.

To show how it can be done: multiply these 3 equations --> \(l^2*h^2*d^2=(l*h*d)^2=15*24*40=24^2*5^2\) --> \(V=l*h*d=24*5=120\).

Answer: C.

Hope it helps.



In question, 2nd statement is confusing. It says "Each of two opposite faces of the solid has area 40". I interpreted it wrong. I understood it as all opposite faces are 40.
so (length*width)(width*height)(length*height) = 40*40*40
Manager
Manager
avatar
Joined: 17 Mar 2014
Posts: 92
Followers: 0

Kudos [?]: 34 [0], given: 197

GMAT ToolKit User
Re: What is the volume of a certain rectangular solid? [#permalink]

Show Tags

New post 01 Nov 2014, 04:27
Bunuel wrote:
This question is from Official Guide and Official Answer is C.

About rectangular solid:
Attachment:
800px-Cuboid.png

In a rectangular solid, all angles are right angles, and opposite faces are equal, so rectangular solid can have maximum 3 different areas of its faces, on the diagram: yellow, green and red faces can have different areas. I say at max, as for example rectangular solid can be a cube and in this case it'll have all faces equal, also it's possible to have only 2 different areas of the faces, for example when the base is square and the height does not equals to the side of this square.

Volume of rectangular solid is Volume=Length*Height*Depth.

BACK TO THE ORIGINAL QUESTION:

What is the volume of a certain rectangular solid?

(1) Two adjacent faces of the solid have areas 15 and 24, respectively --> let the two adjacent faces be blue and yellow faces on the diagram --> \(blue=d*h=15\) and \(yellow=l*h=24\) --> we have 2 equations with 3 unknowns, not sufficient to calculate the value of each or the product of the unknowns (\(V=l*h*d\)).

To elaborate more:
If \(blue=d*h=15*1=15\) and \(yellow=l*h=24*1=24\) then \(V=l*h*d=24*1*15=360\);
If \(blue=d*h=5*3=15\) and \(yellow=l*h=8*3=24\) then \(V=l*h*d=8*3*5=90\).

Two different answer, hence not sufficient.

(2) Each of two opposite faces of the solid has area 40 --> just gives the areas of two opposite faces, so clearly insufficient.

(1)+(2) From (1): \(blue=d*h=15\), \(yellow=l*h=24\) and from (2) each of two opposite faces of the solid has area 40, so it must be the red one: \(red=d*l=40\) --> here we have 3 distinct linear equations with 3 unknowns hence we can find the values of each and thus can calculate \(V=l*h*d\). Sufficient.

To show how it can be done: multiply these 3 equations --> \(l^2*h^2*d^2=(l*h*d)^2=15*24*40=24^2*5^2\) --> \(V=l*h*d=24*5=120\).

Answer: C.

Hope it helps.



In question, 2nd statement is confusing. It says "Each of two opposite faces of the solid has area 40". I interpreted it wrong. I understood it as all opposite faces are 40.
so (length*width)(width*height)(length*height) = 40*40*40
SVP
SVP
avatar
Joined: 17 Jul 2014
Posts: 1734
Location: United States
Schools: Stanford '19
GMAT 1: 550 Q39 V27
GMAT 2: 560 Q42 V26
GMAT 3: 560 Q43 V24
GMAT 4: 650 Q49 V30
GPA: 3.56
WE: General Management (Transportation)
Followers: 14

Kudos [?]: 205 [0], given: 113

GMAT ToolKit User Premium Member Reviews Badge
Re: What is the volume of a certain rectangular solid? [#permalink]

Show Tags

New post 01 Nov 2014, 05:48
ammuseeru wrote:
Bunuel wrote:
This question is from Official Guide and Official Answer is C.

About rectangular solid:
Attachment:
800px-Cuboid.png

In a rectangular solid, all angles are right angles, and opposite faces are equal, so rectangular solid can have maximum 3 different areas of its faces, on the diagram: yellow, green and red faces can have different areas. I say at max, as for example rectangular solid can be a cube and in this case it'll have all faces equal, also it's possible to have only 2 different areas of the faces, for example when the base is square and the height does not equals to the side of this square.

Volume of rectangular solid is Volume=Length*Height*Depth.

BACK TO THE ORIGINAL QUESTION:

What is the volume of a certain rectangular solid?

(1) Two adjacent faces of the solid have areas 15 and 24, respectively --> let the two adjacent faces be blue and yellow faces on the diagram --> \(blue=d*h=15\) and \(yellow=l*h=24\) --> we have 2 equations with 3 unknowns, not sufficient to calculate the value of each or the product of the unknowns (\(V=l*h*d\)).

To elaborate more:
If \(blue=d*h=15*1=15\) and \(yellow=l*h=24*1=24\) then \(V=l*h*d=24*1*15=360\);
If \(blue=d*h=5*3=15\) and \(yellow=l*h=8*3=24\) then \(V=l*h*d=8*3*5=90\).

Two different answer, hence not sufficient.

(2) Each of two opposite faces of the solid has area 40 --> just gives the areas of two opposite faces, so clearly insufficient.

(1)+(2) From (1): \(blue=d*h=15\), \(yellow=l*h=24\) and from (2) each of two opposite faces of the solid has area 40, so it must be the red one: \(red=d*l=40\) --> here we have 3 distinct linear equations with 3 unknowns hence we can find the values of each and thus can calculate \(V=l*h*d\). Sufficient.

To show how it can be done: multiply these 3 equations --> \(l^2*h^2*d^2=(l*h*d)^2=15*24*40=24^2*5^2\) --> \(V=l*h*d=24*5=120\).

Answer: C.

Hope it helps.



In question, 2nd statement is confusing. It says "Each of two opposite faces of the solid has area 40". I interpreted it wrong. I understood it as all opposite faces are 40.
so (length*width)(width*height)(length*height) = 40*40*40


indeed! in a rectangular solid, there are 3 opposite faces. Here the statement says EACH!!! the statement is very ambiguous.
Re: What is the volume of a certain rectangular solid?   [#permalink] 01 Nov 2014, 05:48

Go to page   Previous    1   2   3    Next  [ 50 posts ] 

    Similar topics Author Replies Last post
Similar
Topics:
7 Experts publish their posts in the topic What is the volume of a certain rectangular solid? Bunuel 8 12 Feb 2015, 07:12
Experts publish their posts in the topic What is the volume of a certain rectangular solid? archie9 2 14 Sep 2014, 05:23
4 Experts publish their posts in the topic M is a rectangular solid. Find the volume of M mikemcgarry 2 21 May 2013, 10:11
What is the volume of a rectangular solid? 1) Two adjacent bhandariavi 3 05 Jul 2010, 09:25
4 Experts publish their posts in the topic What is the volume of a certain rectangular solid? (1) Two elmagnifico 6 24 Aug 2008, 17:29
Display posts from previous: Sort by

What is the volume of a certain rectangular solid?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.