Find all School-related info fast with the new School-Specific MBA Forum

It is currently 04 Sep 2015, 13:12
GMAT Club Tests

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

When 51^25 is divided by 13, the remainder obtained is:

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
7 KUDOS received
Director
Director
User avatar
Joined: 03 Sep 2006
Posts: 884
Followers: 6

Kudos [?]: 340 [7] , given: 33

GMAT ToolKit User
When 51^25 is divided by 13, the remainder obtained is: [#permalink] New post 04 Apr 2012, 07:43
7
This post received
KUDOS
31
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  25% (medium)

Question Stats:

66% (01:42) correct 34% (00:52) wrong based on 902 sessions
When 51^25 is divided by 13, the remainder obtained is:

A. 12
B. 10
C. 2
D. 1
E. 0
[Reveal] Spoiler: OA
Expert Post
21 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 5870
Location: Pune, India
Followers: 1485

Kudos [?]: 8013 [21] , given: 190

Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink] New post 04 Apr 2012, 09:03
21
This post received
KUDOS
Expert's post
3
This post was
BOOKMARKED
LM wrote:
When 51^25 is divided by 13, the remainder obtained is:

A. 12
B. 10
C. 2
D. 1
E. 0


The method used by Bunuel above is the best way to get to the answer. Some time back, I wrote a post detailing the method. Here is the link:

http://www.veritasprep.com/blog/2011/05 ... ek-in-you/

Once you go through it, this question should be very easy for you.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199

Veritas Prep Reviews

Expert Post
10 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 29210
Followers: 4752

Kudos [?]: 50359 [10] , given: 7544

Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink] New post 04 Apr 2012, 08:03
10
This post received
KUDOS
Expert's post
9
This post was
BOOKMARKED
LM wrote:
When 51^25 is divided by 13, the remainder obtained is:

A. 12
B. 10
C. 2
D. 1
E. 0


\(51^{25}=(52-1)^{25}\), now if we expand this expression all terms but the last one will have \(52=13*4\) in them, thus will leave no remainder upon division by 13, the last term will be \((-1)^{25}=-1\). Thus the question becomes: what is the remainder upon division -1 by 13? The answer to this question is 12: \(-1=13*(-1)+12\).

Answer: A.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis ; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) ; 12. Tricky questions from previous years.

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

GMAT Club Premium Membership - big benefits and savings

Expert Post
3 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 5870
Location: Pune, India
Followers: 1485

Kudos [?]: 8013 [3] , given: 190

Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink] New post 17 Mar 2013, 21:04
3
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
meenua wrote:
Hello Experts,
I am not able to understand why the answer is 1 in the first case (65+1)/13 where as it is 12 in the second case (65-1)/13. Is it because of minus (-)?
If it is so, then the result should be (9-1)*4 in the second example in the link provided by you.

Please help me understand this concept.
Thanks


The remainder in the first case is 1 whereas the remainder in the second case is -1. Why? Because the last term of the binomial will be (-1)^25 in the second case. I strongly suggest that you check out this post to understand binomial:
http://www.veritasprep.com/blog/2011/05 ... ek-in-you/

How do we handle a negative remainder such as -1 since the options will only give us positive remainders? That is also explained in detail in the post but let me add a small explanation here as well:

When I divide 32 by 10, I get a remainder of 2 - you know that. Can I also say that the remainder can also be said to be -8 (if negative remainders were allowed)? It's something like this: Say I have $32 and 10 people in front of me. I can give each person $3 and I will be left with $2 (or I can say that my balance is +2). Or I can give each person $4 and I will be poorer by $8 (i.e. my balance will be -8. I would have given $8 from my own pocket).
So when I divide a number by 10, I can say that my remainder could be 2 or it could be -8.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199

Veritas Prep Reviews

3 KUDOS received
Director
Director
avatar
Joined: 29 Nov 2012
Posts: 926
Followers: 12

Kudos [?]: 536 [3] , given: 543

Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink] New post 16 Jun 2013, 04:46
3
This post received
KUDOS
For this question we can get a pattern and solve this

51 when divided by 13 is 12
\(51^2\) 2601 divided by 13 is 1

for \(51^3\) remainder is 12

\(51^4\) remainder is 1


The pattern for this question is {12,1}

PS you don't have to test the values for 3 and 4 just multiply the remainder values and divide by 13 for example

for the remainder of 51^3 multiply the remainder of \(51^2\) which is 12 and \(51^1\) which is 1 and divide that by 13

so when we divide 25/ 2( which is the pattern) we get remainder 1 so the final remainder will be 12
_________________

Click +1 Kudos if my post helped...

Amazing Free video explanation for all Quant questions from OG 13 and much more http://www.gmatquantum.com/og13th/

GMAT Prep software What if scenarios gmat-prep-software-analysis-and-what-if-scenarios-146146.html

Expert Post
2 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 5870
Location: Pune, India
Followers: 1485

Kudos [?]: 8013 [2] , given: 190

Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink] New post 06 Apr 2012, 00:31
2
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
kuttingchai wrote:
Bunuel wrote:
LM wrote:
When 51^25 is divided by 13, the remainder obtained is:

A. 12
B. 10
C. 2
D. 1
E. 0


\(51^{25}=(52-1)^{25}\), now if we expand this expression all terms but the last one will have \(52=13*4\) in them, thus will leave no remainder upon division by 13, the last term will be \((-1)^{25}=-1\). Thus the question becomes: what is the remainder upon division -1 by 13? The answer to this question is 12: \(-1=13*(-1)+12\).

Answer: A.



Hey Bunuel,

I am trying to understand this concept what happens if

66^25 is divided by 13 - then how will the above method work?

[65 + 1]^25 then will remainder be 1?


Check out the link I have given above. It discusses the use of Binomial Theorem to solve such questions.
And yes, 66^25 is (65+1)^25 and since 65 is divisible by 13, the remainder will be 1 in this case.

On the other hand, if you have 64^25, then you get (65 - 1)^25 so here, remainder will be (-1) i.e. 12
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199

Veritas Prep Reviews

Expert Post
2 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 5870
Location: Pune, India
Followers: 1485

Kudos [?]: 8013 [2] , given: 190

Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink] New post 23 May 2013, 23:02
2
This post received
KUDOS
Expert's post
genuinebot85 wrote:
Quite amazing as the question above entirely contradicts GMAC's and several other prep site's and material's assurance that for GMAT you need not have a real awesome Maths background.

I even never heard of Binomial theorem in my entire life and gave 2 hours to understand it.
Nothing clear for me. Can anyone elaborate the complex method of the specific theorem OR some other way to solve the problem.



Here is the thing - GMAC and all test prep companies are absolutely correct. You don't need an awesome Math background. Also, such questions can be easily solved by figuring out the pattern - not this one since calculating powers of 51 (51^2, 51^3 ...) etc is quite painful - but such question with smaller numbers can be easily solved without using Binomial theorem.

Then why do such questions appear in GMAT material? Because either some test prep companies go overboard in making tougher questions or these questions are picked from non-GMAT prep material.

Then why are we discussing Binomial theorem here? Because it is a great way to solve all such questions (either small numbers or large) and it is not difficult to understand. If you understand what \((a + b)^2 = a^2 + b^2 + 2ab\) means, you are halfway there already!
That is what I have tried to do in this post: http://www.veritasprep.com/blog/2011/05 ... ek-in-you/
I have tried to explain Binomial in very layman terms and just enough to help you solve all such questions in under a minute.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199

Veritas Prep Reviews

1 KUDOS received
Manager
Manager
User avatar
Joined: 28 Jul 2011
Posts: 226
Followers: 1

Kudos [?]: 66 [1] , given: 14

Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink] New post 06 Apr 2012, 04:51
1
This post received
KUDOS
Thank you kraizada84 & Karishma

The explaination in the below link helped to understand the "why part"...

http://www.veritasprep.com/blog/2011/05 ... ek-in-you/
1 KUDOS received
Manager
Manager
avatar
Joined: 12 Oct 2011
Posts: 131
GMAT 1: 700 Q48 V37
GMAT 2: 720 Q48 V40
Followers: 4

Kudos [?]: 100 [1] , given: 23

Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink] New post 07 Apr 2012, 15:07
1
This post received
KUDOS
VeritasPrepKarishma wrote:
LM wrote:
When 51^25 is divided by 13, the remainder obtained is:

A. 12
B. 10
C. 2
D. 1
E. 0


The method used by Bunuel above is the best way to get to the answer. Some time back, I wrote a post detailing the method. Here is the link:

http://www.veritasprep.com/blog/2011/05 ... ek-in-you/

Once you go through it, this question should be very easy for you.

How is a test-taker, who has never heard of that concept, supposed to answer this question in 2 minutes though?
1 KUDOS received
Intern
Intern
avatar
Joined: 12 Dec 2011
Posts: 1
Followers: 0

Kudos [?]: 1 [1] , given: 2

Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink] New post 15 Mar 2013, 18:27
1
This post received
KUDOS
Hello Experts,
I am not able to understand why the answer is 1 in the first case (65+1)/13 where as it is 12 in the second case (65-1)/13. Is it because of minus (-)?
If it is so, then the result should be (9-1)*4 in the second example in the link provided by you.

Please help me understand this concept.
Thanks
1 KUDOS received
Intern
Intern
avatar
Joined: 17 May 2013
Posts: 8
Followers: 0

Kudos [?]: 7 [1] , given: 7

Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink] New post 23 May 2013, 22:23
1
This post received
KUDOS
Quite amazing as the question above entirely contradicts GMAC's and several other prep site's and material's assurance that for GMAT you need not have a real awesome Maths background.

I even never heard of Binomial theorem in my entire life and gave 2 hours to understand it.
Nothing clear for me. Can anyone elaborate the complex method of the specific theorem OR some other way to solve the problem.
Expert Post
1 KUDOS received
Verbal Forum Moderator
Verbal Forum Moderator
User avatar
Joined: 10 Oct 2012
Posts: 629
Followers: 64

Kudos [?]: 776 [1] , given: 135

Premium Member
Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink] New post 23 May 2013, 23:20
1
This post received
KUDOS
Expert's post
2
This post was
BOOKMARKED
genuinebot85 wrote:
Quite amazing as the question above entirely contradicts GMAC's and several other prep site's and material's assurance that for GMAT you need not have a real awesome Maths background.

I even never heard of Binomial theorem in my entire life and gave 2 hours to understand it.
Nothing clear for me. Can anyone elaborate the complex method of the specific theorem OR some other way to solve the problem.


Bunuel and Karishma have already shown the best method. However, you can do this problem in another way too.

The remainder when 51 is divided by 13 can be either (-1) or 12.
Assuming that you are not comfortable with negative remainders, we can then restate the problem as : Remainder of\(\frac{(51^{25})}{13}\)= Remainder of\(\frac{(12^{25})}{13}\). Now notice that \(12^2\) = 144 and Remainder of\(\frac{144}{13}\)= 1. Thus, Remainder of\(\frac{(12^{25})}{13}\)= \([(144)^{12}*12]/13\) = Remainder of \(\frac{12}{13}\)= 12.

Assuming that you are comfortable with negative remainders, Remainder of \(\frac{(51^{25})}{13}\)= Remainder of\(\frac{(-1)^{25}}{13}\)= Remainder of -1/13 = 12.
_________________

All that is equal and not-Deep Dive In-equality

Hit and Trial for Integral Solutions

Expert Post
1 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 5870
Location: Pune, India
Followers: 1485

Kudos [?]: 8013 [1] , given: 190

Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink] New post 24 May 2013, 01:15
1
This post received
KUDOS
Expert's post
vinaymimani wrote:
genuinebot85 wrote:
Quite amazing as the question above entirely contradicts GMAC's and several other prep site's and material's assurance that for GMAT you need not have a real awesome Maths background.

I even never heard of Binomial theorem in my entire life and gave 2 hours to understand it.
Nothing clear for me. Can anyone elaborate the complex method of the specific theorem OR some other way to solve the problem.


Bunuel and Karishma have already shown the best method. However, you can do this problem in another way too.

The remainder when 51 is divided by 13 can be either (-1) or 12.
Assuming that you are not comfortable with negative remainders, we can then restate the problem as : Remainder of\(\frac{(51^{25})}{13}\)= Remainder of\(\frac{(12^{25})}{13}\). Now notice that \(12^2\) = 144 and Remainder of\(\frac{144}{13}\)= 1. Thus, Remainder of\(\frac{(12^{25})}{13}\)= \([(144)^{12}*12]/13\) = Remainder of \(\frac{12}{13}\)= 12.

Assuming that you are comfortable with negative remainders, Remainder of \(\frac{(51^{25})}{13}\)= Remainder of\(\frac{(-1)^{25}}{13}\)= Remainder of -1/13 = 12.


Actually, you are using Binomial too.

How do you explain Remainder of\(\frac{(51^{25})}{13}\)= Remainder of\(\frac{(12^{25})}{13}\)?

Binomial leads to this equality!
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199

Veritas Prep Reviews

Expert Post
1 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 5870
Location: Pune, India
Followers: 1485

Kudos [?]: 8013 [1] , given: 190

Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink] New post 25 May 2013, 02:07
1
This post received
KUDOS
Expert's post
vinaymimani wrote:
VeritasPrepKarishma wrote:

Actually, you are using Binomial too.

How do you explain Remainder of\(\frac{(51^{25})}{13}\)= Remainder of\(\frac{(12^{25})}{13}\)?

Binomial leads to this equality!


I don't think I am using Binomial. Maybe you are correct.

However, I would try to prove the above point, not using Binomial. Let me know if I went wrong somewhere.

--> \(51^{25} = 13Q_1 + R_1\)

and \(12^{25} = 13Q_2 + R_2\)

with all the understood notations.

I want to prove that \(R_1\) = \(R_2\)

I will assume they are equal and replace the value of \(R_1\) in the first equation by that of \(R_2\)

Thus, \(51^{25} = 13Q_1 +12^{25} - 13Q_2\)

or \(51^{25}-12^{25} = 13(Q_1-Q_2)\)

Thus, if I could show that \(51^{25}-12^{25}\) is divisible by 13, my assumption would be correct.

Now,\(x^n-a^n\), is always divisible by (x-a), x and a are integers, n is odd.

Thus,\(51^{25}-12^{25}\) is always divisible by (51-12) = 39 --> 13*3. Thus, it is divisible by 13.


In the spirit of a healthy discussion, I would like to point out that you can certainly prove that the two are equal since they ARE equal. It can be done in many ways. The point is that when you see \(51^{25}\), what makes you think of \(12^{25}\)?
You think of it because 51 = 39 + 12. You separate out the part which is divisible by 13 and take control of the rest. Why?

Because \((39 + 12)^{25}\), when divided by 13 will have the same remainder as \(12^{25}\) because every term in this expansion is divisible by 39 except the last term which is \(12^{25}\). You understand this intuitively and that is all binomial is about.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199

Veritas Prep Reviews

1 KUDOS received
Manager
Manager
avatar
Joined: 23 May 2013
Posts: 127
Followers: 1

Kudos [?]: 36 [1] , given: 110

GMAT ToolKit User
Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink] New post 26 May 2013, 03:30
1
This post received
KUDOS
This is one of the best questions and best replies..really liked it..Although i took around an hour to understand binomial theorem in Karishma's blog
_________________

“Confidence comes not from always being right but from not fearing to be wrong.”

Expert Post
1 KUDOS received
BSchool Forum Moderator
avatar
Joined: 27 Aug 2012
Posts: 1170
Followers: 105

Kudos [?]: 871 [1] , given: 126

Premium Member
Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink] New post 21 Jul 2013, 15:09
1
This post received
KUDOS
Expert's post
VeritasPrepKarishma wrote:
LM wrote:
When 51^25 is divided by 13, the remainder obtained is:

A. 12
B. 10
C. 2
D. 1
E. 0


The method used by Bunuel above is the best way to get to the answer. Some time back, I wrote a post detailing the method. Here is the link:

http://www.veritasprep.com/blog/2011/05 ... ek-in-you/

Once you go through it, this question should be very easy for you.


Hi VeritasPrepKarishma,
This blog-post is just awesome..Thanks! +1 from me.

Could you please let me know what'll be the answer of this question given at the end of your blog-post :

What is the remainder of 2^83 is divided by 9?

IMO,it's 5. Let me know please whether I'm correct!

2^83 = (2^2) * (2^81) = (4) * (2^3)^27 = 4* (8^27)

Now, 8^27= (9 – 1)^27
So,(-1)^27 =-1 => remainder 9-1=8

So,we're left out with 4 and remainder for 2^83 divided by 9 is 5.

P.S: can you please clarify that how 8^28 = 9m + 1 (where m is some positive integer) ?
_________________

UPDATED : e-GMAT SC Resources-Consolidated || ALL RC Resources-Consolidated || ALL SC Resources-Consolidated || UPDATED : AWA compilations-109 Analysis of Argument Essays || NEW !!! GMAC's IR Prep Tool

GMAT Club guide - OG 11-12-13 || Veritas Blog || Manhattan GMAT Blog


KUDOS please, if you like the post or if it helps :-)

Expert Post
1 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 5870
Location: Pune, India
Followers: 1485

Kudos [?]: 8013 [1] , given: 190

Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink] New post 21 Jul 2013, 21:34
1
This post received
KUDOS
Expert's post
bagdbmba wrote:
VeritasPrepKarishma wrote:
LM wrote:
When 51^25 is divided by 13, the remainder obtained is:

A. 12
B. 10
C. 2
D. 1
E. 0


The method used by Bunuel above is the best way to get to the answer. Some time back, I wrote a post detailing the method. Here is the link:

http://www.veritasprep.com/blog/2011/05 ... ek-in-you/

Once you go through it, this question should be very easy for you.


Hi VeritasPrepKarishma,
This blog-post is just awesome..Thanks! +1 from me.

Could you please let me know what'll be the answer of this question given at the end of your blog-post :

What is the remainder of 2^83 is divided by 9?

IMO,it's 5. Let me know please whether I'm correct!

2^83 = (2^2) * (2^81) = (4) * (2^3)^27 = 4* (8^27)

Now, 8^27= (9 – 1)^27
So,(-1)^27 =-1 => remainder 9-1=8

So,we're left out with 4 and remainder for 2^83 divided by 9 is 5.

P.S: can you please clarify that how 8^28 = 9m + 1 (where m is some positive integer) ?


Yes, 5 is correct. Good job.
You get \(4*(9 - 1)^{27}\) which gives a remainder of \(4(-1)^{27} = -4\)
When divisor is 9, a remainder of -4 is equivalent to a remainder of 5.


"P.S: can you please clarify that how 8^28 = 9m + 1 (where m is some positive integer) "

\(8^{28} = ( 9 - 1)^{28} = [9 + (-1)]^{28}\)
When you expand it, you get \(9^{28} + 28*9^{27}*(-1) + ....... (-1)^{28} = 9^{28} - 28*9^{27} + ... + 1\)
All terms in the expansion will have 9 as a factor except the last term (which is 1). In the expansion, some terms will be positive and some will be negative. Notice that overall the sum must be positive because the sum is equal to \(8^{28}\) which is positive.
when you add/subtract multiples of 9, you will get a multiple of 9 as the answer.

So expansion becomes 9m + 1 (which is equal to \(8^{28}\) so m must be positive)
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199

Veritas Prep Reviews

Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 29210
Followers: 4752

Kudos [?]: 50359 [1] , given: 7544

Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink] New post 24 Jul 2013, 09:50
1
This post received
KUDOS
Expert's post
mridulparashar1 wrote:
Bunuel wrote:
LM wrote:
When 51^25 is divided by 13, the remainder obtained is:

A. 12
B. 10
C. 2
D. 1
E. 0


\(51^{25}=(52-1)^{25}\), now if we expand this expression all terms but the last one will have \(52=13*4\) in them, thus will leave no remainder upon division by 13, the last term will be \((-1)^{25}=-1\). Thus the question becomes: what is the remainder upon division -1 by 13? The answer to this question is 12: \(-1=13*(-1)+12\).

Answer: A.



Hello Bunuel,

I understood the solution to this Question quite well. But I need your inputs on the following.
Can this Question be done by first finding the cyclicity of 51^25 which will be 1^ 25 and when 1^ 25 is divided 13 should give remainder 1 and not 12.
What am I missing here ??


Please elaborate on red part. What does this mean? How are you going to do that? ...
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis ; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) ; 12. Tricky questions from previous years.

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

GMAT Club Premium Membership - big benefits and savings

1 KUDOS received
Intern
Intern
User avatar
Joined: 14 May 2014
Posts: 45
Followers: 0

Kudos [?]: 25 [1] , given: 1

Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink] New post 19 May 2014, 09:37
1
This post received
KUDOS
While solving this question, thought process should be like this
2^3 = 8 which can be written as (9-1)
Since power of 2 i.e. 83 is not a multiple of 3 we have to write 2^83 as (2^2)(2^81) because 81 is divisible by 3.
Now , 2^81 can be written as (2^3)^27 or (8)^27 or (9-1)^27.
In the expansion of (9-1)^27 all the terms will be divisible by 9, except last term i.e. (-1)^27 = -1
Since the second last term will be 9, if we combined last two term, we will get 9-1=8 . This 8 will be remainder as all other terms will have a multiple of 9.
We can write the number as 9k+8.
Multiply this with 2^2 i.e. 4. we will get 36k+32 or 36k + 27 +5
First two terms are divisible by 9 and this will give 5 as a remainder.
Hence Answer is 5
_________________

Help me with Kudos if it helped you "

Mathematics is a thought process.

Expert Post
1 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 5870
Location: Pune, India
Followers: 1485

Kudos [?]: 8013 [1] , given: 190

Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink] New post 02 Sep 2014, 00:45
1
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
usre123 wrote:
The method used by Bunuel above is the best way to get to the answer. Some time back, I wrote a post detailing the method. Here is the link:

What is the remainder of 2^83 is divided by 9?

IMO,it's 5. Let me know please whether I'm correct!




Please let me know why I'm wrong:
why cant we create a cycle for 2, so at 2^83, units digit would be 8. Then we have 8/9, so since divisor is greater than the number being divided, our answer would be 8? Can you please explain what is wrong with my reasoning?

In the same way, the question 51^25, the cycle of 1 always gives the same answer, that is, one. so 1/13, then answer should be 1?

My concept was that when the divider is greater than the dividend, such as 3/13, then the remainder would be the dividend itself. (3)

Now if we have a negative number, say -3/13, then we can say the remainder will be 13-3= 10, is that correct? Is even half of what I said correct?
Thank you



Responding to a pm:

When dividend is smaller than divisor, remainder is dividend (Correct)

Is \(2^{83}\) smaller than 9?

If you use cyclicity, you get that \(2^{83}\) is some huge number which "ends" with an 8. 8 is just the units digit of that number. \(2^{83}\) is NOT 8. It is actually equal to 9671406556917033397649408.
The dividend is not smaller than divisor. In fact, it is much much greater than the divisor.

Would you like to re-think now? Let me know if there are still some doubts.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199

Veritas Prep Reviews

Re: When 51^25 is divided by 13, the remainder obtained is:   [#permalink] 02 Sep 2014, 00:45

Go to page    1   2   3    Next  [ 59 posts ] 

    Similar topics Author Replies Last post
Similar
Topics:
10 Experts publish their posts in the topic What is the remainder when 1555 * 1557 * 1559 is divided by 13? Bunuel 6 16 Apr 2015, 04:03
5 Experts publish their posts in the topic When positive integer n is divided by 13, the remainder is 2. When n Bunuel 11 02 Apr 2015, 05:09
4 Experts publish their posts in the topic If the remainder is 13 when the integer n is divided by 26 eybrj2 5 20 Mar 2012, 23:05
8 Experts publish their posts in the topic What is the sum of all remainders obtained when the first Macsen 9 12 Nov 2011, 15:45
1 If p and q are positive integers, and the remainder obtained when p is gmatjon 4 16 Mar 2011, 23:27
Display posts from previous: Sort by

When 51^25 is divided by 13, the remainder obtained is:

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.