Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

When a certain tree was first planted, it was 4 feet tall [#permalink]
02 Nov 2010, 06:16

3

This post received KUDOS

7

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

65% (hard)

Question Stats:

61% (02:01) correct
39% (01:20) wrong based on 248 sessions

When a certain tree was first planted, it was 4 feet tall and the height of the tree increased by a constant amount each year for the next 6 years. At the end of 6 year the tree was 1/5 taller then it was at the end of 4 year. By how many feet did the height of the tree increase each year

Re: when a certain tree was first planted [#permalink]
02 Nov 2010, 06:27

17

This post received KUDOS

Expert's post

12

This post was BOOKMARKED

anilnandyala wrote:

when a certain tree was first planted, it was 4 feet tall & the height of the tree increased by a constant amount each year for the next 6 years. at the end of 6 year the tree was 1/5 taller then it was at the end of 4 year. by how many feet did the height of the tree increase each year a 3/10 b 2/5 c 1/2 d 2/3 e 6/5

Let the rate of increase be \(x\) feet per year.

At the end of the 4th year the height was \(4+4x\) and at the of the 6th year the height was \(4+6x\), which was "1/5 taller than it was at the end of the 4th year" --> \(4+4x+\frac{1}{5}(4+4x)=4+6x\) --> \(\frac{1}{5}(4+4x)=2x\) --> \(x=\frac{2}{3}\).

Re: when a certain tree was first planted [#permalink]
21 Jul 2011, 02:48

Bunuel wrote:

anilnandyala wrote:

when a certain tree was first planted, it was 4 feet tall & the height of the tree increased by a constant amount each year for the next 6 years. at the end of 6 year the tree was 1/5 taller then it was at the end of 4 year. by how many feet did the height of the tree increase each year a 3/10 b 2/5 c 1/2 d 2/3 e 6/5

Let the rate of increase be \(x\) feet per year.

At the end of the 4th year the height was \(4+4x\) and at the of the 6th year the height was \(4+6x\), which was "1/5 taller than it was at the end of the 4th year" --> \(4+4x+\frac{1}{5}(4+4x)=4+6x\) --> \(\frac{1}{5}(4+4x)=2x\) --> \(x=\frac{2}{3}\).

Answer: D.

Shouldnt this be 1/5 (4 + 4x) = 4 + 6x ?? why is it (4 + 4x) + 1/5 (4 + 4x) = 4 + 6x ? when the stmt says : " at the of the 6th year the height was 1/5 taller than it was at the end of the 4th year"

Re: Height of a tree [#permalink]
26 Oct 2011, 03:30

Please help me, every time I attempt question as such I tend to do it the long way. This is my working: Initial, 0: 4 feet 4 years: 4 + 4 x 6 years: 6 + 6 x

Given, Increment from year 4 to 6: 1/5 Therefore, year 6: 6/5 (4 + 4X)

Equate 2 year 6 equation: 6/5 (4 + 4x) = 4 + 6 X x = 2/3

Re: When a certain tree was first planted, it was 4 feet tall [#permalink]
11 Aug 2013, 22:59

2

This post received KUDOS

anilnandyala wrote:

When a certain tree was first planted, it was 4 feet tall and the height of the tree increased by a constant amount each year for the next 6 years. at the end of 6 year the tree was 1/5 taller then it was at the end of 4 year. by how many feet did the height of the tree increase each year

A. 3/10 B. 2/5 C. 1/2 D. 2/3 E. 6/5

Year 1 = 4+x Year 2 = 4+2x Year 3 = 4+3x year 4 = 4+4x Year 5 = 4+5x year 6 = 4 + 6x

\(4+6x = 4+4x ( \frac{1}{5} + 1)\)

When we solve this we get answer D _________________

Re: when a certain tree was first planted [#permalink]
12 Aug 2013, 12:51

1

This post was BOOKMARKED

siddhans wrote:

Bunuel wrote:

anilnandyala wrote:

when a certain tree was first planted, it was 4 feet tall & the height of the tree increased by a constant amount each year for the next 6 years. at the end of 6 year the tree was 1/5 taller then it was at the end of 4 year. by how many feet did the height of the tree increase each year a 3/10 b 2/5 c 1/2 d 2/3 e 6/5

Let the rate of increase be \(x\) feet per year.

At the end of the 4th year the height was \(4+4x\) and at the of the 6th year the height was \(4+6x\), which was "1/5 taller than it was at the end of the 4th year" --> \(4+4x+\frac{1}{5}(4+4x)=4+6x\) --> \(\frac{1}{5}(4+4x)=2x\) --> \(x=\frac{2}{3}\).

Answer: D.

Shouldnt this be 1/5 (4 + 4x) = 4 + 6x ?? why is it (4 + 4x) + 1/5 (4 + 4x) = 4 + 6x ? when the stmt says : " at the of the 6th year the height was 1/5 taller than it was at the end of the 4th year"

just like 10% increase = 100+10 here, tall=increase. so, 1/5 taller means" original height + 1/5 of (original height) " so, original height at 4 years = 4+4x and at 6years = 4+6x According to the question, 4+4x+ 1/5(4+4x) = 4+6x, or , x = 2/3 _________________

Re: when a certain tree was first planted [#permalink]
02 Sep 2013, 14:08

siddhans wrote:

Bunuel wrote:

anilnandyala wrote:

when a certain tree was first planted, it was 4 feet tall & the height of the tree increased by a constant amount each year for the next 6 years. at the end of 6 year the tree was 1/5 taller then it was at the end of 4 year. by how many feet did the height of the tree increase each year a 3/10 b 2/5 c 1/2 d 2/3 e 6/5

Let the rate of increase be \(x\) feet per year.

At the end of the 4th year the height was \(4+4x\) and at the of the 6th year the height was \(4+6x\), which was "1/5 taller than it was at the end of the 4th year" --> \(4+4x+\frac{1}{5}(4+4x)=4+6x\) --> \(\frac{1}{5}(4+4x)=2x\) --> \(x=\frac{2}{3}\).

Answer: D.

Shouldnt this be 1/5 (4 + 4x) = 4 + 6x ?? why is it (4 + 4x) + 1/5 (4 + 4x) = 4 + 6x ? when the stmt says : " at the of the 6th year the height was 1/5 taller than it was at the end of the 4th year"

Since it's an increase it has to be expressed as original height + % of increase on original height.

My thought was that because it's a 1/5 increase, meaning 20% = 0.2, this also means that it increased by 1.2= 6/5, so I simply said \(\frac{6}{5}(4+4x)=4+6x\)

Re: When a certain tree was first planted, it was 4 feet tall [#permalink]
15 Jun 2014, 01:46

Expert's post

bb0214 wrote:

When a certain tree was first planted, it was 4 feet tall and the height of the tree increased by a constant amount each year for the next 6 years. At the end of 6 year the tree was 1/5 taller then it was at the end of 4 year. By how many feet did the height of the tree increase each year

ok... English is not m native language is for this problem, i struggle is what it meant "1/5 taller than it was at the end of 4th year"

why is not the equation

a6 = a4+1/5 ??!!!!!

how is that different than saying John is 5 years old than tom?!!!! which is John = tom + 5?

HELP?!

It would be a6 = a4+1/5, if it were "at the end of 6 year the tree was 1/5 foot taller then it was at the end of 4 year". In its current form 1/5 MUST refer to a fraction, not to the quantity.

safe.txmblr Can business make a difference in the great problems that we face? My own view is nuanced. I think business potentially has a significant role to play...

Still 7 months to go to be at Lausanne. But, as Lausanne has a vacancy rate of 0.1% for rental properties, I booked my rental apartment yesterday for...