Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

m=(5k+2)/4 - m has to be integer. k has to be even and not divisible by 4

Why does k have to be even, and not divisible by 4?

1. m has to be an integer. 2. (5k+2) has to be even and divisible by 4 3. (5k+2) is even when 5k is even. Therefore k is even. 4. if 5k is divisible by 4, (5k+2) will not divisible by 4: 5*4i+2=4*(5i)+2. Therefore, (5k+2) has not to be divisible by 4 => 5k has not to be divisible by 4 5. k is even and indivisible by 4. 6: 2,6,10.... _________________

multiples of 25 are -> 25,50,75 thus n would be ->38,63,88

Apply 1-> I have 3 values -> Not sufficient Apply 2-> I will have one value ->63, there could be more above 100, thus applying both 1&2 you get n=63 _________________

Re: When the positive integer n is divided by 25, the remainder [#permalink]

Show Tags

25 Jan 2013, 23:58

I used the number pluggin approach until I got this no: 63. When I was about to hit B as the answer, I saw the option A .. Highly unlikely that A couldn't have been there for a reason. .

thought that there must be numbers greater than 100 which will satisfy B. So Chose C :D _________________

hope is a good thing, maybe the best of things. And no good thing ever dies.

Re: When the positive integer n is divided by 25, the remainder [#permalink]

Show Tags

06 Oct 2013, 01:55

Bunuel wrote:

When the positive integer n is divided by 25, the remainder is 13. What is the value of n?

Given that \(n=25q+13\), so n could be 13, 38, 63, 88, 113, ...

(1) n < 100. n could be 13, 38, 63, or 88. Not sufficient.

(2) When n is divided by 20, the remainder is 3 --> \(n=20p+3\). n could be 3, 23, 43, 63, 83, 103, ... Not sufficient.

(1)+(2) The only value of n which both statements is 63. Sufficient.

Answer: C.

Out of the highlighted values only 63 satisfies we need to find another value isn't it otherwise we can't claim insufficiency? How do we find the other number quickly... 3,23,43,83 and 103 don't satisfy the 1st equation _________________

Click +1 Kudos if my post helped...

Amazing Free video explanation for all Quant questions from OG 13 and much more http://www.gmatquantum.com/og13th/

GMAT Prep software What if scenarios http://gmatclub.com/forum/gmat-prep-software-analysis-and-what-if-scenarios-146146.html

Re: When the positive integer n is divided by 25, the remainder [#permalink]

Show Tags

06 Oct 2013, 03:24

Expert's post

fozzzy wrote:

Bunuel wrote:

When the positive integer n is divided by 25, the remainder is 13. What is the value of n?

Given that \(n=25q+13\), so n could be 13, 38, 63, 88, 113, ...

(1) n < 100. n could be 13, 38, 63, or 88. Not sufficient.

(2) When n is divided by 20, the remainder is 3 --> \(n=20p+3\). n could be 3, 23, 43, 63, 83, 103, ... Not sufficient.

(1)+(2) The only value of n which both statements is 63. Sufficient.

Answer: C.

Out of the highlighted values only 63 satisfies we need to find another value isn't it otherwise we can't claim insufficiency? How do we find the other number quickly... 3,23,43,83 and 103 don't satisfy the 1st equation

Can you please elaborate what you mean? Thank you. _________________

Re: When the positive integer n is divided by 25, the remainder [#permalink]

Show Tags

06 Oct 2013, 03:33

What I meant was we are given n = 25q + 13 => possible values 13,38,63,88,113

statement 2

n=20p + 3 => 3,23,43,63,83,103

For the second statement all the values in red don't satisfy the first equation only 63 does... How do you find another value quickly to claim insufficiency?

don't we have to match the equations here? _________________

Click +1 Kudos if my post helped...

Amazing Free video explanation for all Quant questions from OG 13 and much more http://www.gmatquantum.com/og13th/

GMAT Prep software What if scenarios http://gmatclub.com/forum/gmat-prep-software-analysis-and-what-if-scenarios-146146.html

Re: When the positive integer n is divided by 25, the remainder [#permalink]

Show Tags

06 Oct 2013, 03:47

2

This post received KUDOS

Expert's post

fozzzy wrote:

What I meant was we are given n = 25q + 13 => possible values 13,38,63,88,113

statement 2

n=20p + 3 => 3,23,43,63,83,103

For the second statement all the values in red don't satisfy the first equation only 63 does... How do you find another value quickly to claim insufficiency?

don't we have to match the equations here?

Well, there cannot be only one value that satisfies both \(n=25q+13\) (13, 38, 63, 88, 113, ...) and \(n=20p+3\) (3, 23, 43, 63, 83, 103, ...).

Next, there is a way to derive general formula for \(n\) (of a type \(n=mx+r\), where \(x\) is a divisor and \(r\) is a remainder) based on above two statements:

Divisor \(x\) would be the least common multiple of above two divisors 25 and 20, hence \(x=100\).

Remainder \(r\) would be the first common integer in above two patterns, hence \(r=63\).

Therefore general formula based on both statements is \(n=100m+63\). Hence n can be 63, 163, 263, ...

Re: When the positive integer n is divided by 25, the remainder [#permalink]

Show Tags

13 Feb 2015, 11:53

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________

Excellent posts dLo saw your blog too..!! Man .. you have got some writing skills. And Just to make an argument = You had such an amazing resume ; i am glad...

So Much $$$ Business school costs a lot. This is obvious, whether you are a full-ride scholarship student or are paying fully out-of-pocket. Aside from the (constantly rising)...

They say you get better at doing something by doing it. then doing it again ... and again ... and again, and you keep doing it until one day you look...