Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Re: Which of the following CANNOT be the median of the 3 [#permalink]
20 Feb 2012, 23:09

1

This post received KUDOS

Expert's post

1

This post was BOOKMARKED

Praetorian wrote:

Which of the following CANNOT be the median of the 3 positive integers x, y, and z?

A. x B. z C. x+z D. (x+z)/2 E. (x+z)/3

The median of a set with odd number of terms is just a middle term, so it's x, y or z. Eliminate A and B right away. Now, the median can also be (x+z)/2 and (x+z)/3 (for example: {1, 2, 3} and {1, 2, 5}).

But since x, y, and z are positive integers then it no way can be x+z. Why? Because a middle term (the median) cannot possibly be greater than two terms (x and z) in a set with 3 terms.

Answer: C.

Notice that, if we were not told that x, y, and z are positive then x+y could be the median, consider {-1, 0, 1}: -1+1=0=median. _________________

Re: Which of the following CANNOT be the median of the 3 [#permalink]
21 Feb 2012, 00:38

Bunuel wrote:

Praetorian wrote:

Which of the following CANNOT be the median of the 3 positive integers x, y, and z?

A. x B. z C. x+z D. x+z/2 E. x+z/3

The median of a set with odd number of terms is just a middle term, so it's x, y or z. Eliminate A and B right away. Now, the median can also be (x+y)/2 and (x+y)/3 (for example: {1, 2, 3} and {1, 2, 5}).

But since x, y, and z are positive integers then it no way can be x+y. Why? Because a middle term (the median) cannot possibly be greater than two terms (x and y) in a set with 3 terms.

Answer: C.

Notice that, if we were not told that x, y, and z are positive then x+y could be the median, consider {-1, 0, 1}: -1+1=0=median.

Just out of curiosity, is it always to be assumed that the variables are distinct integers? i.e. would there be cases where a gmat question names variables x, y, z without explicitly stating that theyre "distinct" ?

Re: Which of the following CANNOT be the median of the 3 [#permalink]
21 Feb 2012, 00:41

Expert's post

essarr wrote:

Just out of curiosity, is it always to be assumed that the variables are distinct integers? i.e. would there be cases where a gmat question names variables x, y, z without explicitly stating that theyre "distinct" ?

No, we should not assume that. For example here x, y, and z can be the same integer. _________________

Re: Which of the following CANNOT be the median of the 3 [#permalink]
26 May 2013, 08:01

If x=1, y=2, z=1 then by (C) x+z=2 which is y But I suppose trick is to remember the median is the "middle value", when variables are arranged in ascending/descending order

Re: Which of the following CANNOT be the median of the 3 [#permalink]
16 Jun 2013, 06:10

1

This post received KUDOS

Bunuel wrote:

Praetorian wrote:

Which of the following CANNOT be the median of the 3 positive integers x, y, and z?

A. x B. z C. x+z D. x+z/2 E. x+z/3

The median of a set with odd number of terms is just a middle term, so it's x, y or z. Eliminate A and B right away. Now, the median can also be (x+y)/2 and (x+y)/3 (for example: {1, 2, 3} and {1, 2, 5}).

But since x, y, and z are positive integers then it no way can be x+y. Why? Because a middle term (the median) cannot possibly be greater than two terms (x and y) in a set with 3 terms.

Answer: C.

Notice that, if we were not told that x, y, and z are positive then x+y could be the median, consider {-1, 0, 1}: -1+1=0=median.

You have assumed x+z/2 ==( x+z)/2. I really see the question as unclear. Should there be brackets?

Re: Which of the following CANNOT be the median of the 3 [#permalink]
16 Jun 2013, 06:57

Expert's post

AbuRashid wrote:

Bunuel wrote:

Praetorian wrote:

Which of the following CANNOT be the median of the 3 positive integers x, y, and z?

A. x B. z C. x+z D. x+z/2 E. x+z/3

The median of a set with odd number of terms is just a middle term, so it's x, y or z. Eliminate A and B right away. Now, the median can also be (x+y)/2 and (x+y)/3 (for example: {1, 2, 3} and {1, 2, 5}).

But since x, y, and z are positive integers then it no way can be x+y. Why? Because a middle term (the median) cannot possibly be greater than two terms (x and y) in a set with 3 terms.

Answer: C.

Notice that, if we were not told that x, y, and z are positive then x+y could be the median, consider {-1, 0, 1}: -1+1=0=median.

You have assumed x+z/2 ==( x+z)/2. I really see the question as unclear. Should there be brackets?

safe.txmblr Can business make a difference in the great problems that we face? My own view is nuanced. I think business potentially has a significant role to play...

Still 7 months to go to be at Lausanne. But, as Lausanne has a vacancy rate of 0.1% for rental properties, I booked my rental apartment yesterday for...