Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

|x^2 + y^2| = 0.1 and |x - y| = 0.2, then the value of |x| + |y| is

a) 0.6 b) 0.2 c) 0.36 d) 0.4

Hi guys Need help to improve upon such topics which include Mod..... Can some one discuss aproach to be be followed for such question as well as some tips and variety on similar lines?

x-y=0.2(1) or y-x=0.2(2) (1) x^2 + (x-0.2)^2=0.1 x^2+x^2-0.4x+0.04=0.1 2x^2-0.4x=0.06 x^2-0.2x-0.03=0 (x-0.3).(x+0.1)=0 x=0.3 or x=-0.1 then y=0.1 or y=-0.3 then |x|+|y|=0.4 (2) x^2+(x+0.2)^2=0.1 2x^2+0.4x+0.04=0.1 x^2+0.2x-0.03=0 (x+0.3).(x-0.1)=0 x=-0.3 or x=0.1 then y=-0.1 or y=0.3 then |x|+|y|=0.4

Since |x^2 + y^2| = 0.1 and |x - y| = 0.2 Assume x = 0.1 and y = 0.3 ... only these values will satisfy given equations (search for two squares whose sum is 0.1 since it is a square of the numbers, both numbers should be positive and we need to find addition)

Therefore |x| + |y| = |0.1| + |0.3| = 0.4

Hence “D”

Not really a complicated question..... u can solve it by reverse approach as well i.e. go from choices to question .... take any choice break it and see whether it satisfies the given equations .... with trial and error you will come to answer

Assume x = 0.1 and y = 0.3 ... only these values will satisfy given equations (search for two squares whose sum is 0.1 since it is a square of the numbers, both numbers should be positive and we need to find addition)

|x^2 + y^2| = 0.1 and |x - y| = 0.2, then the value of |x| + |y| is

a) 0.6 b) 0.2 c) 0.36 d) 0.4

First of all as x^2 and y^2 are non-negative, then |x^2 + y^2| = 0.1 is the same as x^2+y^2=0.1.

So given: \(x^2+y^2=\frac{1}{10}\) and \(|x-y|=\frac{1}{5}\). Question: \(|x|+|y|=?\)

Square \(|x-y|=\frac{1}{5}\) to get rid of modulus --> \(x^2-2xy+y^2=\frac{1}{25}\), as \(x^2+y^2=\frac{1}{10}\) then \(2xy=\frac{3}{50}\);

Square \(|x|+|y|\) --> \((|x|+|y|)^2=x^2+2|xy|+y^2\), as \(x^2+y^2=\frac{1}{10}\) and \(2xy=\frac{3}{50}\) (note that 2xy is posiitve, so 2|xy|=2xy) then \((|x|+|y|)^2=x^2+2|xy|+y^2=\frac{1}{10}+\frac{3}{50}=\frac{8}{50}=\frac{16}{100}\) --> so, \(|x|+|y|=\sqrt{\frac{16}{100}}=\frac{4}{10}\).

Given: mod(x^2 + y^2) = 0.1 and mod(x - y) = 0.2 ==> (x-y) = +/-(0.2) and ==> [ (x-y)^2 + 2xy] = +/-(0.1) substituting the value of (x-y) = +/-(0.2) in the above equation

0.04 + 2xy = +/-(0.1) ==> xy = 0.03 or -0.07. From xy = 0.03 (x = 0.1 and y = 0.3) as this satisfies mod(x-y) = 0.2

Re: |x^2 + y^2| = 0.1 and |x - y| = 0.2, then the value of |x| + [#permalink]

Show Tags

09 Oct 2014, 01:17

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: |x^2 + y^2| = 0.1 and |x - y| = 0.2, then the value of |x| + [#permalink]

Show Tags

25 Nov 2015, 10:25

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Hey, guys, So, I’ve decided to run a contest in hopes of getting the word about the site out to as many applicants as possible this application season...

Whether you’re an entrepreneur, aspiring business leader, or you just think that you may want to learn more about business, the thought of getting your Masters in Business Administration...

Term 1 has begun. If you're confused, wondering what my post on the last 2 official weeks was, that was pre-term. What that means is that the school...