Find all School-related info fast with the new School-Specific MBA Forum

It is currently 25 Oct 2014, 15:57

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

|x|=|2y|, what is the value of x-2y?

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
7 KUDOS received
Manager
Manager
avatar
Joined: 02 Jun 2011
Posts: 160
Followers: 1

Kudos [?]: 26 [7] , given: 11

|x|=|2y|, what is the value of x-2y? [#permalink] New post 27 May 2012, 07:18
7
This post received
KUDOS
9
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

32% (02:27) correct 68% (01:26) wrong based on 529 sessions
|x|=|2y|, what is the value of x-2y?

(1) x+2y = 6
(2) xy>0

[Reveal] Spoiler:
i wish to have clarification on st. 1.
x+2y = 6
if x = 2, y = 2 or
if x= -2 , y = 4 then also it is '6'

do we need to keep the constraint +x = +2y while evaluating st.1 ?
[Reveal] Spoiler: OA
Expert Post
7 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23422
Followers: 3617

Kudos [?]: 28975 [7] , given: 2874

Re: |x|=|2y|, what is the value of x-2y? [#permalink] New post 27 May 2012, 07:35
7
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
|x|=|2y|, what is the value of x-2y?

First of all |x|=|2y| means that either x=2y or x=-2y.

(1) x+2y = 6. Now, the second case is not possible since if x=-2y then from this statement we would have that -2y+2y=6 --> 0=6, which obviously is not true. So, we have that x=2y, in this case x-2y=2y-2y=0. Sufficient.

(2) xy>0 --> x and y are either both positive or both negative, in any case |x|=|2y| becomes x=2y (if x and y are both negative then |x|=|2y| becomes -x=-2y which is the same as x=2y). Now, if x=2y then x-2y=2y-2y=0. Sufficient.

Answer: D.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Expert Post
4 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23422
Followers: 3617

Kudos [?]: 28975 [4] , given: 2874

Re: |x|=|2y|, what is the value of x-2y? [#permalink] New post 28 May 2012, 08:09
4
This post received
KUDOS
Expert's post
kashishh wrote:
Bunuel wrote:
|x|=|2y|, what is the value of x-2y?

First of all |x|=|2y| means that either x=2y or x=-2y.

(1) x+2y = 6. Now, the second case is not possible since if x=-2y then from this statement we would have that -2y+2y=6 --> 0=6, which obviously is not true. So, we have that x=2y, in this case x-2y=2y-2y=0. Sufficient.

(2) xy>0 --> x and y are either both positive or both negative, in any case |x|=|2y| becomes x=2y (if x and y are both negative then |x|=|2y| becomes -x=-2y which is the same as x=2y). Now, if x=2y then x-2y=2y-2y=0. Sufficient.

Answer: D.

Hope it's clear.


Dear Bunuel,

whenever absolute value is analysed, we take two scenarios of <0 and >0.
So, why the same is not considered for |x| ?


If x\leq{0} and y\leq{0} then |x|=|2y| expands as -x=-2y --> x=2y;
If x\leq{0} and y>{0} then |x|=|2y| expands as -x=2y --> x=-2y;
If x>{0} and y\leq{0} then |x|=|2y| expands as x=-2y;
If x>{0} and y>{0} then |x|=|2y| expands as x=2y.

So as you can see |x|=|2y| can expand only in two ways x=2y or x=-2y (as shown above ++ and -- are the same, and +- and -+ are the same).
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

2 KUDOS received
Senior Manager
Senior Manager
avatar
Joined: 13 May 2011
Posts: 324
WE 1: IT 1 Yr
WE 2: Supply Chain 5 Yrs
Followers: 19

Kudos [?]: 136 [2] , given: 11

Re: |x|=|2y|, what is the value of x-2y? [#permalink] New post 05 Jun 2012, 12:18
2
This post received
KUDOS
Bunuel: can we rewrite |x|=|2y| as x^2-4x^2=0 ?
I have solved the problem doing so, but not sure if it algebraically correct.
Below what i did:

(x-2y)(x+2y)=0

Using statement 1:
(x-2y)*6=0
so, (x-2y)=0. Sufficient

Using statement 2:
x=2y [same sign]
(x-2y)=0. Sufficient

D
1 KUDOS received
Moderator
Moderator
User avatar
Joined: 02 Jul 2012
Posts: 1227
Location: India
Concentration: Strategy
GMAT 1: 740 Q49 V42
GPA: 3.8
WE: Engineering (Energy and Utilities)
Followers: 67

Kudos [?]: 719 [1] , given: 116

Premium Member
Re: IxI = I2yI what is the value of x - 2y? [#permalink] New post 26 Jan 2013, 11:08
1
This post received
KUDOS
alexpavlos wrote:
IxI = I2yI what is the value of x - 2y?

1) x + 2y = 6
2) xy > 0

I can understand what to do with statement 2. Statement 1, I have no clue what to do with it!

Thanks!
Alex


x + 2y = 6
Hence we know that x is not equal to -2y, but |x| = |2y|
So, x = 2y
_________________

Did you find this post helpful?... Please let me know through the Kudos button.

Thanks To The Almighty - My GMAT Debrief

GMAT Reading Comprehension: 7 Most Common Passage Types

Manager
Manager
avatar
Joined: 02 Jun 2011
Posts: 160
Followers: 1

Kudos [?]: 26 [0], given: 11

Re: |x|=|2y|, what is the value of x-2y? [#permalink] New post 28 May 2012, 07:57
Bunuel wrote:
|x|=|2y|, what is the value of x-2y?

First of all |x|=|2y| means that either x=2y or x=-2y.

(1) x+2y = 6. Now, the second case is not possible since if x=-2y then from this statement we would have that -2y+2y=6 --> 0=6, which obviously is not true. So, we have that x=2y, in this case x-2y=2y-2y=0. Sufficient.

(2) xy>0 --> x and y are either both positive or both negative, in any case |x|=|2y| becomes x=2y (if x and y are both negative then |x|=|2y| becomes -x=-2y which is the same as x=2y). Now, if x=2y then x-2y=2y-2y=0. Sufficient.

Answer: D.

Hope it's clear.


Dear Bunuel,

whenever absolute value is analysed, we take two scenarios of <0 and >0.
So, why the same is not considered for |x| ?
Intern
Intern
avatar
Joined: 28 Sep 2011
Posts: 35
Location: India
WE: Consulting (Computer Software)
Followers: 1

Kudos [?]: 15 [0], given: 18

Re: |x|=|2y|, what is the value of x-2y? [#permalink] New post 31 May 2012, 19:45
Tricky question.... I gave 2 much time to evaluate stmt 1 and went with A.
_________________

Kudos if you like the post!!!

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23422
Followers: 3617

Kudos [?]: 28975 [0], given: 2874

Re: |x|=|2y|, what is the value of x-2y? [#permalink] New post 07 Jun 2012, 13:35
Expert's post
BDSunDevil wrote:
Bunuel: can we rewrite |x|=|2y| as x^2-4x^2=0 ?
I have solved the problem doing so, but not sure if it algebraically correct.
Below what i did:

(x-2y)(x+2y)=0

Using statement 1:
(x-2y)*6=0
so, (x-2y)=0. Sufficient

Using statement 2:
x=2y [same sign]
(x-2y)=0. Sufficient

D


Yes, you can square |x|=|2y| and write x^2=4y^2 --> (x-2y)(x+2y)=0 --> either x=2y or x=-2y the same two options as in my solution above.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 23 Sep 2008
Posts: 24
Followers: 0

Kudos [?]: 13 [0], given: 126

Re: |x|=|2y|, what is the value of x-2y? [#permalink] New post 24 Jul 2012, 15:10
Bunuel wrote:
BDSunDevil wrote:
Bunuel: can we rewrite |x|=|2y| as x^2-4x^2=0 ?
I have solved the problem doing so, but not sure if it algebraically correct.
Below what i did:

(x-2y)(x+2y)=0

Using statement 1:
(x-2y)*6=0
so, (x-2y)=0. Sufficient

Using statement 2:
x=2y [same sign]
(x-2y)=0. Sufficient

D


Yes, you can square |x|=|2y| and write x^2=4y^2 --> (x-2y)(x+2y)=0 --> either x=2y or x=-2y the same two options as in my solution above.



Hi Bunuel,

I had a query regarding an official statement in the solution to this problem.
Actually, the book says that , as, x+2y=6 , so a positive sum indicates that both x and 2y must be positive.
However, -4+10= 10+(-4) = 6 =positive sum [both x and 2y are not positive] 10+4=14= positive sum [both x & 2y are positive] isn't it?
Please clarify the confusion here..
Senior Manager
Senior Manager
User avatar
Joined: 13 May 2013
Posts: 476
Followers: 1

Kudos [?]: 58 [0], given: 134

Re: |x|=|2y|, what is the value of x-2y? [#permalink] New post 27 May 2013, 14:04
Hello, I am a bit confused regarding absolute value.

If |x|=|2y|, then why why aren't x and 2y both positive? If the abs. value of something (i.e. it's positive value) is equal to something else, doesn't that imply that they are both positive? For example, if x=|2y| doesn't that mean that x is positive?

Also, for #2, xy both have the same signs. If x and y are negative, why would |x|=|2y| become -x = -2y? I get that it's equal to |x|=|2y| but why even take that step? |-x| = |-2y| will always be positive, right?

Bunuel wrote:
|x|=|2y|, what is the value of x-2y?

First of all |x|=|2y| means that either x=2y or x=-2y.

(1) x+2y = 6. Now, the second case is not possible since if x=-2y then from this statement we would have that -2y+2y=6 --> 0=6, which obviously is not true. So, we have that x=2y, in this case x-2y=2y-2y=0. Sufficient.

(2) xy>0 --> x and y are either both positive or both negative, in any case |x|=|2y| becomes x=2y (if x and y are both negative then |x|=|2y| becomes -x=-2y which is the same as x=2y). Now, if x=2y then x-2y=2y-2y=0. Sufficient.

Answer: D.

Hope it's clear.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23422
Followers: 3617

Kudos [?]: 28975 [0], given: 2874

Re: |x|=|2y|, what is the value of x-2y? [#permalink] New post 27 May 2013, 14:22
Expert's post
WholeLottaLove wrote:
Hello, I am a bit confused regarding absolute value.

If |x|=|2y|, then why why aren't x and 2y both positive? If the abs. value of something (i.e. it's positive value) is equal to something else, doesn't that imply that they are both positive? For example, if x=|2y| doesn't that mean that x is positive?

Also, for #2, xy both have the same signs. If x and y are negative, why would |x|=|2y| become -x = -2y? I get that it's equal to |x|=|2y| but why even take that step? |-x| = |-2y| will always be positive, right?

Bunuel wrote:
|x|=|2y|, what is the value of x-2y?

First of all |x|=|2y| means that either x=2y or x=-2y.

(1) x+2y = 6. Now, the second case is not possible since if x=-2y then from this statement we would have that -2y+2y=6 --> 0=6, which obviously is not true. So, we have that x=2y, in this case x-2y=2y-2y=0. Sufficient.

(2) xy>0 --> x and y are either both positive or both negative, in any case |x|=|2y| becomes x=2y (if x and y are both negative then |x|=|2y| becomes -x=-2y which is the same as x=2y). Now, if x=2y then x-2y=2y-2y=0. Sufficient.

Answer: D.

Hope it's clear.


The absolute value cannot be negative |some \ expression|\geq{0}, or |x|\geq{0} (absolute value of x, |x|, is the distance between point x on a number line and zero, and the distance cannot be negative).

So, if given that x=|2y| then x must be more than or equal to zero (RHS is non-negative thus LHS must also be non-negative).

But in our case we have that |x|=|2y|. In this case x and/or y could be negative. For, example x=-2 and y=-1 --> |x|=2=|2y|.

As for (2):
When x\leq{0} then |x|=-x, or more generally when some \ expression\leq{0} then |some \ expression|={-(some \ expression)}. For example: |-5|=5=-(-5);

When x\geq{0} then |x|=x, or more generally when some \ expression\geq{0} then |some \ expression|={some \ expression}. For example: |5|=5.

So, if x<0 and y<0, then |x|=-x and |2y|=-2y --> -x=-2y --> x=2y. If x>0 and y>0, then |x|=x and |2y|=2y --> x=2y, the same as in the first case.

For more check Absolute Value chapter of Math Book: math-absolute-value-modulus-86462.html

DS questions on absolute value to practice: search.php?search_id=tag&tag_id=37
PS questions on absolute value to practice: search.php?search_id=tag&tag_id=58

Tough absolute value and inequity questions with detailed solutions: inequality-and-absolute-value-questions-from-my-collection-86939.html

Hope it helps.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Senior Manager
Senior Manager
User avatar
Joined: 13 May 2013
Posts: 476
Followers: 1

Kudos [?]: 58 [0], given: 134

Re: |x|=|2y|, what is the value of x-2y? [#permalink] New post 27 May 2013, 15:16
Ok, so I get that Abs. value cannot be negative...distance cannot have a negative value.

We are trying to solve for x-2y, so naturally we are trying to determine x-2y. So,

If x=2y then the value of x-2y = 2y-2y = 0
OR
If x=-2y (the absolute value of 2y) then the value of x-2y = -2y-2y = -4y, correct?

I guess what throws me off is when you write

When x\leq{0} then |x|=-x. What you're saying is that, for example, |-4| = -(-4) or |-4| = 4. What is the point of writing |-4| = -(-4)

One final thing...In the stem you derived x=2y, x=-2y. Okay, but in #2. one of the cases is xy>0 so we could have -x and -y. If x and y are negative, doesn't that mean that you would substitute -x and y in to get -x=-2(-y) = -x=2y?

I'm sorry for being such a dolt. Sometimes, concepts that I know are very simple are extremely difficult to understand.

Bunuel wrote:
WholeLottaLove wrote:
Hello, I am a bit confused regarding absolute value.

If |x|=|2y|, then why why aren't x and 2y both positive? If the abs. value of something (i.e. it's positive value) is equal to something else, doesn't that imply that they are both positive? For example, if x=|2y| doesn't that mean that x is positive?

Also, for #2, xy both have the same signs. If x and y are negative, why would |x|=|2y| become -x = -2y? I get that it's equal to |x|=|2y| but why even take that step? |-x| = |-2y| will always be positive, right?

Bunuel wrote:
|x|=|2y|, what is the value of x-2y?

First of all |x|=|2y| means that either x=2y or x=-2y.

(1) x+2y = 6. Now, the second case is not possible since if x=-2y then from this statement we would have that -2y+2y=6 --> 0=6, which obviously is not true. So, we have that x=2y, in this case x-2y=2y-2y=0. Sufficient.

(2) xy>0 --> x and y are either both positive or both negative, in any case |x|=|2y| becomes x=2y (if x and y are both negative then |x|=|2y| becomes -x=-2y which is the same as x=2y). Now, if x=2y then x-2y=2y-2y=0. Sufficient.

Answer: D.

Hope it's clear.


The absolute value cannot be negative |some \ expression|\geq{0}, or |x|\geq{0} (absolute value of x, |x|, is the distance between point x on a number line and zero, and the distance cannot be negative).

So, if given that x=|2y| then x must be more than or equal to zero (RHS is non-negative thus LHS must also be non-negative).

But in our case we have that |x|=|2y|. In this case x and/or y could be negative. For, example x=-2 and y=-1 --> |x|=2=|2y|.

As for (2):
When x\leq{0} then |x|=-x, or more generally when some \ expression\leq{0} then |some \ expression|\leq{-(some \ expression)}. For example: |-5|=5=-(-5);

When x\geq{0} then |x|=x, or more generally when some \ expression\geq{0} then |some \ expression|\leq{some \ expression}. For example: |5|=5.

So, if x<0 and y<0, then |x|=-x and |2y|=-2y --> -x=-2y --> x=2y. If x>0 and y>0, then |x|=x and |2y|=2y --> x=2y, the same as in the first case.

For more check Absolute Value chapter of Math Book: math-absolute-value-modulus-86462.html

DS questions on absolute value to practice: search.php?search_id=tag&tag_id=37
PS questions on absolute value to practice: search.php?search_id=tag&tag_id=58

Tough absolute value and inequity questions with detailed solutions: inequality-and-absolute-value-questions-from-my-collection-86939.html

Hope it helps.

Last edited by WholeLottaLove on 27 May 2013, 15:28, edited 1 time in total.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23422
Followers: 3617

Kudos [?]: 28975 [0], given: 2874

Re: |x|=|2y|, what is the value of x-2y? [#permalink] New post 27 May 2013, 15:26
Expert's post
WholeLottaLove wrote:
Ok, so I get that Abs. value cannot be negative...distance cannot have a negative value.

We are trying to solve for x-2y, so naturally we are trying to determine x-2y. So,

If x=2y then the value of x-2y = 2y-2y = 0
OR
If x=-2y (the absolute value of 2y) then the value of x-2y = -2y-2y = -4y, correct?

I guess what throws me off is when you write

When x\leq{0} then |x|=-x. What you're saying is that, for example, |-4| = -(-4) or |-4| = 4. What is the point of writing |-4| = -(-4)

I'm sorry for being such a dolt. Sometimes, concepts that I know are very simple are extremely difficult to understand.


Yes, that's correct: if x=2y, then x-2y=0 and if x=-2y, then x-2y=-4y.

As for the red part: it's just an example of the statement that if x\leq{0} then |x|=-x.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Manager
Manager
User avatar
Joined: 23 Jan 2013
Posts: 154
Followers: 0

Kudos [?]: 14 [0], given: 22

Re: |x|=|2y|, what is the value of x-2y? [#permalink] New post 29 May 2013, 02:44
|x|=|2y|, what is the value of x-2y?

(1) x+2y = 6
(2) xy>0

1) that means that x=3 and 2y=3, so difference is only 0
2) that means that x and y is not 0 and both positive or negative and x=2y, so 2y-2y=0

D
Senior Manager
Senior Manager
User avatar
Joined: 13 May 2013
Posts: 476
Followers: 1

Kudos [?]: 58 [0], given: 134

Re: |x|=|2y|, what is the value of x-2y? [#permalink] New post 30 Jun 2013, 11:28
|x|=|2y|, what is the value of x-2y?

x=2y
OR
x=-2y

(1) x+2y = 6

2y+2y = 6
4y = 6
y=3/2

x+2(3/2) = 6
x+3 = 6
x=3

OR
-2y+2y = 6
0=6 (Invalid...6 cannot equal 0)
With only one valid solution for x and y we can solve for x-2y.
SUFFICIENT

(2) xy>0

xy>0 means that BOTH x and y are positive or BOTH x and y are negative.
We can choose numbers to make this easier:
x=2, y=1

If x=2y, then 2=2(1)
OR
Id x=-2y, then -2 = 2(-1)

If x and y are both positive: x-2y ===> 2-2(1) = 0
If x and y are both negative: x-2y ===> -2 - 2(-1) ===> -2+2 = 0

SUFFICIENT
CEO
CEO
User avatar
Joined: 09 Sep 2013
Posts: 2870
Followers: 208

Kudos [?]: 43 [0], given: 0

Premium Member
Re: |x|=|2y|, what is the value of x-2y? [#permalink] New post 25 Jul 2014, 07:29
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Re: |x|=|2y|, what is the value of x-2y?   [#permalink] 25 Jul 2014, 07:29
    Similar topics Author Replies Last post
Similar
Topics:
3 Experts publish their posts in the topic What is the value of x^2 - y^2 ? Bunuel 4 21 Jan 2014, 03:05
1 Experts publish their posts in the topic What is the value of x^2 - y^2? bulletpoint 6 20 Oct 2013, 05:32
4 Experts publish their posts in the topic What is the value of x^2+y^2 ? maxLRok 9 23 Nov 2012, 06:29
Experts publish their posts in the topic What is the value of x^2 - y^2 ? redpearl 2 09 May 2012, 23:07
What is the value of x^2 + y^2? (1) x^2 + y^2 = 2xy +1 (2) lumone 1 28 Jan 2009, 10:57
Display posts from previous: Sort by

|x|=|2y|, what is the value of x-2y?

  Question banks Downloads My Bookmarks Reviews Important topics  


cron

GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.