Find all School-related info fast with the new School-Specific MBA Forum

It is currently 20 Oct 2014, 20:04

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

|x+3| - |4-x| = |8+x|. How many solutions does the equation

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Senior Manager
Senior Manager
avatar
Joined: 10 Apr 2012
Posts: 279
Location: United States
Concentration: Technology, Other
GPA: 2.44
WE: Project Management (Telecommunications)
Followers: 2

Kudos [?]: 170 [0], given: 323

GMAT ToolKit User Premium Member CAT Tests
|x+3| - |4-x| = |8+x|. How many solutions does the equation [#permalink] New post 10 Mar 2013, 11:55
16
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

36% (02:23) correct 64% (01:31) wrong based on 650 sessions
|x+3| – |4-x| = |8+x| How many solutions will this equation have?

A. 0
B. 1
C. 2
D. 3
E. 4


[Reveal] Spoiler:
I am trying to understand the Modules questions - I took this from GMAT club's quant book .

Q. |x+3| - |4-x| = |8+x|. How many solutions does the equation have?

I could not follow why the equal signs are considered ? e.g -8 <= x < -3 , -3 <= x < 4, x >=4 ..Appreciate if someone can explain the logic?


Solution: There are 3 key points here: -8, -3, 4. So we have 4 conditions:

a) x < -8. -(x+3) - (4-x) = -(8+x) --> x = -1. We reject the solution because our condition is not satisfied (-1 is not less than -8)

b) -8 <= x < -3. -(x+3) - (4-x) = (8+x) --> x = -15. We reject the solution because our condition is not satisfied (-15 is not within (-8,-3) interval.)

c) -3 <= x < 4 (x+3) - (4-x) = (8+x) --> x = 9. We reject the solution because our condition is not satisfied (-15 is not within (-3,4) interval.)

d) x >=4. (x+3) + (4-x) = (8+x) --> x = -1. We reject the solution because our condition is not satisfied (-1 is not more than 4)

thanks !
[Reveal] Spoiler: OA
Kaplan Promo CodeKnewton GMAT Discount CodesVeritas Prep GMAT Discount Codes
2 KUDOS received
Manager
Manager
User avatar
Joined: 24 Jan 2013
Posts: 81
Followers: 5

Kudos [?]: 68 [2] , given: 6

Re: |x+3| - |4-x| = |8+x|. How many solutions does the equation [#permalink] New post 10 Mar 2013, 14:15
2
This post received
KUDOS
You do it in the proper way. This method is called the "critical values" method. And once you have the critical values (by doing each absolute term equal to zero), you have to place them in the Real numbers line to make all the possible intervals. Then you just do the intervals as follows: x<lowest number in your real line, and then you take the intervals from each critical value to before the next one: i.e. x<-8, -8<=x<-3, -3<=x<4, x<=4. Therefore, you are getting all the possible intervals in the real line, and splitting the intervals from one critical value (including it) to before the next critical value (not including it).

Then, as you have done, you just set the predominant sign for each term under each condition, you solve the equation, and finally you check if the result saqtisfies the condition.
_________________

Does this post deserve KUDOS?

Free Prep: Self-prepare GMAT for free and GMAT Math tips for free
Free Flashcards: Free GMAT Flashcards

More: "All I wish someone had told me about GMAT beforehand"
There are many things you want to know before doing the GMAT exam (how is exam day, what to expect, how to think, to do's...), and you have them in this blog, in a simple way

Expert Post
6 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4873
Location: Pune, India
Followers: 1149

Kudos [?]: 5341 [6] , given: 165

Re: |x+3| - |4-x| = |8+x|. How many solutions does the equation [#permalink] New post 10 Mar 2013, 22:32
6
This post received
KUDOS
Expert's post
2
This post was
BOOKMARKED
guerrero25 wrote:
I am trying to understand the Modules questions - I took this from GMAT club's quant book .

Q. |x+3| - |4-x| = |8+x|. How many solutions does the equation have?

I could not follow why the equal signs are considered ? e.g -8 <= x < -3 , -3 <= x < 4, x >=4 ..Appreciate if someone can explain the logic?


Solution: There are 3 key points here: -8, -3, 4. So we have 4 conditions:

a) x < -8. -(x+3) - (4-x) = -(8+x) --> x = -1. We reject the solution because our condition is not satisfied (-1 is not less than -8)

b) -8 <= x < -3. -(x+3) - (4-x) = (8+x) --> x = -15. We reject the solution because our condition is not satisfied (-15 is not within (-8,-3) interval.)

c) -3 <= x < 4 (x+3) - (4-x) = (8+x) --> x = 9. We reject the solution because our condition is not satisfied (-15 is not within (-3,4) interval.)

d) x >=4. (x+3) + (4-x) = (8+x) --> x = -1. We reject the solution because our condition is not satisfied (-1 is not more than 4)

thanks !


|x| = x when x >= 0 (x is either positive or 0)
|x| = -x when x < 0 (note here that you can put the equal to sign here as well x <= 0 because if x = 0,
|0| = 0 = -0 (all are the same)
So the '=' sign can be put with x > 0 or with x < 0. We usually put it with 'x > 0' for consistency.

When we are considering ranges, say,
x < -8 ------ x is less than -8
-8 <= x < -3 ------- x is greater than or equal to -8 but less than -3
-3 <= x < 4 ------- x is greater than or equal to -3 but less than 4
x >=4 -------- x is greater than or equal to 4

We need to include the transition points (-8, -3, 4) somewhere so we include them with greater than sign.

Mind you, we could have taken the ranges as
x <= -8
-8 < x <= -3
-3 < x <= 4
x > 4

The only point is that we don't include the transition points twice.

Hope the role of '=' sign is clear.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Senior Manager
Senior Manager
User avatar
Joined: 13 May 2013
Posts: 476
Followers: 1

Kudos [?]: 58 [0], given: 134

Re: |x+3| - |4-x| = |8+x|. How many solutions does the equation [#permalink] New post 15 Jun 2013, 13:17
Can someone tell me if this approach is correct?

|x+3|-|4-x|=|8+x|

So we have:

x=-3
x=4
x=-8

x<-8
-(x+3) - (4+x) = -(8+x)
-x-3 - 4 - x = -8-x
-2x-7=-8-x
1=x (fails, as x is 1 when it must be less than -8)

-8<x<-3
-(x+3) - (4-x) = (8+x)
-x-3 -4+x=8+x
-7=8+x
-15=x (fails, as x is -15 when it must be between -8 and -3)

-3<x<4
(x+3)-(4+x)=8+x
-1=8+x
-9=x (fails, as x is -9 when it must be between -3 and 4)

x>4
(x+3) - -(4-x) = (8+x)
x+3 - (-4+x) = (8+x)
x+3 +4-x=8+x
7=8+x
x=-1 (fails, as x=-1 when it must be greater than 4)

Is this correct?

Thanks!
1 KUDOS received
Intern
Intern
avatar
Joined: 22 May 2013
Posts: 49
Concentration: General Management, Technology
GPA: 3.9
WE: Information Technology (Computer Software)
Followers: 0

Kudos [?]: 11 [1] , given: 10

GMAT ToolKit User
Re: |x+3| - |4-x| = |8+x|. How many solutions does the equation [#permalink] New post 15 Jun 2013, 19:12
1
This post received
KUDOS
WholeLottaLove wrote:
Can someone tell me if this approach is correct?

|x+3|-|4-x|=|8+x|

So we have:

x=-3
x=4
x=-8

x<-8
-(x+3) - (4+x) = -(8+x)
-x-3 - 4 - x = -8-x
-2x-7=-8-x
1=x (fails, as x is 1 when it must be less than -8)

-8<x<-3
-(x+3) - (4-x) = (8+x)
-x-3 -4+x=8+x
-7=8+x
-15=x (fails, as x is -15 when it must be between -8 and -3)

-3<x<4
(x+3)-(4+x)=8+x
-1=8+x
-9=x (fails, as x is -9 when it must be between -3 and 4)

x>4
(x+3) - -(4-x) = (8+x)
x+3 - (-4+x) = (8+x)
x+3 +4-x=8+x
7=8+x
x=-1 (fails, as x=-1 when it must be greater than 4)

Is this correct?

Thanks!


You need to consider the boundary value points somewhere in the range, as sometimes the nature of the equation might behave differently after and before, and ON the transition point itself.
While in this particular question, this was not an issue as with or without considering it, you could get the right answer.
However, as a rule of thumb we should always involve the = part in one of the ranges to make sure the solution is consistent and not missing on any boundary value conditions.
_________________

PS: Like my approach? Please Help me with some Kudos. :-)

Senior Manager
Senior Manager
User avatar
Joined: 13 May 2013
Posts: 476
Followers: 1

Kudos [?]: 58 [0], given: 134

Re: |x+3| - |4-x| = |8+x|. How many solutions does the equation [#permalink] New post 16 Jun 2013, 06:41
Could you explain to me how the ≤ or ≥ sign comes into play and how I would know where to place them?

thanks!

kpali wrote:
WholeLottaLove wrote:
Can someone tell me if this approach is correct?

|x+3|-|4-x|=|8+x|

So we have:

x=-3
x=4
x=-8

x<-8
-(x+3) - (4+x) = -(8+x)
-x-3 - 4 - x = -8-x
-2x-7=-8-x
1=x (fails, as x is 1 when it must be less than -8)

-8<x<-3
-(x+3) - (4-x) = (8+x)
-x-3 -4+x=8+x
-7=8+x
-15=x (fails, as x is -15 when it must be between -8 and -3)

-3<x<4
(x+3)-(4+x)=8+x
-1=8+x
-9=x (fails, as x is -9 when it must be between -3 and 4)

x>4
(x+3) - -(4-x) = (8+x)
x+3 - (-4+x) = (8+x)
x+3 +4-x=8+x
7=8+x
x=-1 (fails, as x=-1 when it must be greater than 4)

Is this correct?

Thanks!


You need to consider the boundary value points somewhere in the range, as sometimes the nature of the equation might behave differently after and before, and ON the transition point itself.
While in this particular question, this was not an issue as with or without considering it, you could get the right answer.
However, as a rule of thumb we should always involve the = part in one of the ranges to make sure the solution is consistent and not missing on any boundary value conditions.
Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23348
Followers: 3602

Kudos [?]: 28662 [1] , given: 2808

Re: |x+3| - |4-x| = |8+x|. How many solutions does the equation [#permalink] New post 16 Jun 2013, 07:03
1
This post received
KUDOS
Expert's post
WholeLottaLove wrote:
Could you explain to me how the ≤ or ≥ sign comes into play and how I would know where to place them?

thanks!

kpali wrote:
WholeLottaLove wrote:
Can someone tell me if this approach is correct?

|x+3|-|4-x|=|8+x|

So we have:

x=-3
x=4
x=-8

x<-8
-(x+3) - (4+x) = -(8+x)
-x-3 - 4 - x = -8-x
-2x-7=-8-x
1=x (fails, as x is 1 when it must be less than -8)

-8<x<-3
-(x+3) - (4-x) = (8+x)
-x-3 -4+x=8+x
-7=8+x
-15=x (fails, as x is -15 when it must be between -8 and -3)

-3<x<4
(x+3)-(4+x)=8+x
-1=8+x
-9=x (fails, as x is -9 when it must be between -3 and 4)

x>4
(x+3) - -(4-x) = (8+x)
x+3 - (-4+x) = (8+x)
x+3 +4-x=8+x
7=8+x
x=-1 (fails, as x=-1 when it must be greater than 4)

Is this correct?

Thanks!


You need to consider the boundary value points somewhere in the range, as sometimes the nature of the equation might behave differently after and before, and ON the transition point itself.
While in this particular question, this was not an issue as with or without considering it, you could get the right answer.
However, as a rule of thumb we should always involve the = part in one of the ranges to make sure the solution is consistent and not missing on any boundary value conditions.


Please read the thread: x-3-4-x-8-x-how-many-solutions-does-the-equation-148996.html#p1193962
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Senior Manager
Senior Manager
User avatar
Joined: 13 May 2013
Posts: 476
Followers: 1

Kudos [?]: 58 [0], given: 134

Re: |x+3| - |4-x| = |8+x|. How many solutions does the equation [#permalink] New post 16 Jun 2013, 08:42
After reviewing the material in the link, I can't help but think that it is irrelevant whether it is ≤ or as long as there is only one ≤ or ≥ sign in each number less than x less than number i.e.

-3≤x<4
OR
-3<x≤4

Is that correct?
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23348
Followers: 3602

Kudos [?]: 28662 [0], given: 2808

Re: |x+3| - |4-x| = |8+x|. How many solutions does the equation [#permalink] New post 16 Jun 2013, 08:46
Expert's post
WholeLottaLove wrote:
After reviewing the material in the link, I can't help but think that it is irrelevant whether it is ≤ or as long as there is only one ≤ or ≥ sign in each number less than x less than number i.e.

-3≤x<4
OR
-3<x≤4

Is that correct?


Yes, that' correct. The point is to include the transition points but it really doesn't matter in which ranges.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Manager
Manager
avatar
Joined: 30 May 2013
Posts: 193
Location: India
Concentration: Entrepreneurship, General Management
GPA: 3.82
Followers: 0

Kudos [?]: 27 [0], given: 72

GMAT ToolKit User
Re: |x+3| - |4-x| = |8+x|. How many solutions does the equation [#permalink] New post 18 Jun 2013, 07:50
VeritasPrepKarishma wrote:
guerrero25 wrote:
I am trying to understand the Modules questions - I took this from GMAT club's quant book .

Q. |x+3| - |4-x| = |8+x|. How many solutions does the equation have?

I could not follow why the equal signs are considered ? e.g -8 <= x < -3 , -3 <= x < 4, x >=4 ..Appreciate if someone can explain the logic?


Solution: There are 3 key points here: -8, -3, 4. So we have 4 conditions:

a) x < -8. -(x+3) - (4-x) = -(8+x) --> x = -1. We reject the solution because our condition is not satisfied (-1 is not less than -8)

b) -8 <= x < -3. -(x+3) - (4-x) = (8+x) --> x = -15. We reject the solution because our condition is not satisfied (-15 is not within (-8,-3) interval.)

c) -3 <= x < 4 (x+3) - (4-x) = (8+x) --> x = 9. We reject the solution because our condition is not satisfied (-15 is not within (-3,4) interval.)

d) x >=4. (x+3) + (4-x) = (8+x) --> x = -1. We reject the solution because our condition is not satisfied (-1 is not more than 4)

thanks !


|x| = x when x >= 0 (x is either positive or 0)
|x| = -x when x < 0 (note here that you can put the equal to sign here as well x <= 0 because if x = 0,
|0| = 0 = -0 (all are the same)
So the '=' sign can be put with x > 0 or with x < 0. We usually put it with 'x > 0' for consistency.

When we are considering ranges, say,
x < -8 ------ x is less than -8
-8 <= x < -3 ------- x is greater than or equal to -8 but less than -3
-3 <= x < 4 ------- x is greater than or equal to -3 but less than 4
x >=4 -------- x is greater than or equal to 4

We need to include the transition points (-8, -3, 4) somewhere so we include them with greater than sign.

Mind you, we could have taken the ranges as
x <= -8
-8 < x <= -3
-3 < x <= 4
x > 4

The only point is that we don't include the transition points twice.

Hope the role of '=' sign is clear.



Hi Have a small doubt sounds silly but i need to understand this basic.
I could understand this part "There are 3 key points here: -8, -3, 4".
But why is that for all the cases like a) x < -8. -(x+3) - (4-x) = -(8+x) negative sign is added before the three brackets?

Thanks in advance,
RRSNATHAN.
Expert Post
1 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4873
Location: Pune, India
Followers: 1149

Kudos [?]: 5341 [1] , given: 165

Re: |x+3| - |4-x| = |8+x|. How many solutions does the equation [#permalink] New post 18 Jun 2013, 08:43
1
This post received
KUDOS
Expert's post
rrsnathan wrote:
VeritasPrepKarishma wrote:
guerrero25 wrote:
I am trying to understand the Modules questions - I took this from GMAT club's quant book .

Q. |x+3| - |4-x| = |8+x|. How many solutions does the equation have?

I could not follow why the equal signs are considered ? e.g -8 <= x < -3 , -3 <= x < 4, x >=4 ..Appreciate if someone can explain the logic?


Solution: There are 3 key points here: -8, -3, 4. So we have 4 conditions:

a) x < -8. -(x+3) - (4-x) = -(8+x) --> x = -1. We reject the solution because our condition is not satisfied (-1 is not less than -8)

b) -8 <= x < -3. -(x+3) - (4-x) = (8+x) --> x = -15. We reject the solution because our condition is not satisfied (-15 is not within (-8,-3) interval.)

c) -3 <= x < 4 (x+3) - (4-x) = (8+x) --> x = 9. We reject the solution because our condition is not satisfied (-15 is not within (-3,4) interval.)

d) x >=4. (x+3) + (4-x) = (8+x) --> x = -1. We reject the solution because our condition is not satisfied (-1 is not more than 4)

thanks !


|x| = x when x >= 0 (x is either positive or 0)
|x| = -x when x < 0 (note here that you can put the equal to sign here as well x <= 0 because if x = 0,
|0| = 0 = -0 (all are the same)
So the '=' sign can be put with x > 0 or with x < 0. We usually put it with 'x > 0' for consistency.

When we are considering ranges, say,
x < -8 ------ x is less than -8
-8 <= x < -3 ------- x is greater than or equal to -8 but less than -3
-3 <= x < 4 ------- x is greater than or equal to -3 but less than 4
x >=4 -------- x is greater than or equal to 4

We need to include the transition points (-8, -3, 4) somewhere so we include them with greater than sign.

Mind you, we could have taken the ranges as
x <= -8
-8 < x <= -3
-3 < x <= 4
x > 4

The only point is that we don't include the transition points twice.

Hope the role of '=' sign is clear.



Hi Have a small doubt sounds silly but i need to understand this basic.
I could understand this part "There are 3 key points here: -8, -3, 4".
But why is that for all the cases like a) x < -8. -(x+3) - (4-x) = -(8+x) negative sign is added before the three brackets?

Thanks in advance,
RRSNATHAN.


|x+3|-|4-x|=|8+x|
|x+3|-|x-4|=|x+8| (since it is a mod, |4-x| is the same as |x-4|)

Now key points are -8, -3 and 4.

When x <= -8, all three expressions (x + 3), (x - 4) and (x + 8) are negative when x <= -8.
So |x+3| = - (x + 3) (using the definition of mod)
|x-4| = - (x - 4)
|x+8| = - (x + 8)

Definition of mod:
|x| = x when x >= 0 (x is either positive or 0)
|x| = -x when x < 0
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

3 KUDOS received
Senior Manager
Senior Manager
User avatar
Joined: 13 May 2013
Posts: 476
Followers: 1

Kudos [?]: 58 [3] , given: 134

Re: |x+3| - |4-x| = |8+x|. How many solutions does the equation [#permalink] New post 18 Jun 2013, 08:54
3
This post received
KUDOS
You have |x+3| - |4-x| = |8+x|

First, look at the three values independently of their absolute value sign, in other words:
|x+3| - |4-x| = |8+x|
(x+3) - (4-x) = (8+x)

Now, you're looking at x < - 8, so x is a number less than -8. Let's pretend x = -10 here to make things a bit easier to understand.

when x=-10

I.) (x+3)
(-10+3)
(-7)


II.) (4-x)
(4-[-10]) (double negative, so it becomes positive)
(4+10)
(14)

III.) (8+x)
(8+-10)
(-2)

In other words, when x < -8, (x+3) and (8+x) are NEGATIVE. To solve problems like this, we need to check for the sign change.

Here is how I do it step by step.

I.) |x+3| - |4-x| = |8+x|

II.) IGNORE absolute value signs (for now) and find the values of x which make (x+3), (4-x) and (8+x) = to zero as follows:

(x+3)
x=-3
(-3+3) = 0

(4-x)
x=4
(4-4) = 0

(8+x)
x=-8
(8+-8) = 0

Order them from least to greatest: x=-8, x=-3, x=4 These become our ranges for x as follows:

x<-8
-8≤x<-3
-3≤x<4
x>4

So, we test values less than the smallest number, values of x between the smallest and largest number, and values of x greater than the greatest number.

So, now we test the original (x+3) - (4-x) = (8+x) with x values. This is where the sign changes in the equation become important. We need to find the number of solutions for this problem so we need to see for which values of x the problem is valid or not valid. For example:

When x < -8

(x+3) is a negative number
(4-x) is a positive number
(8+x) is a negative number

So

-(x+3) - (4-x) = -(8+x)
-x-3 -4+x = -8-x
-7=-8-x
1=-x
x=-1

Now, we are looking at values for x < -8, yet the result we got was x = -1. -1 DOES NOT fall in the range or x < -1. If you don't understand why simply draw a number line, mark down x< -8 and x=-1. Is -1 less than -8? Nope! Therefore, -1 is NOT a valid solution.

You can repeat this step for the remaining ranges of x.

I hope this helped you! :-D



rrsnathan wrote:
VeritasPrepKarishma wrote:
guerrero25 wrote:
I am trying to understand the Modules questions - I took this from GMAT club's quant book .

Q. |x+3| - |4-x| = |8+x|. How many solutions does the equation have?

I could not follow why the equal signs are considered ? e.g -8 <= x < -3 , -3 <= x < 4, x >=4 ..Appreciate if someone can explain the logic?


Solution: There are 3 key points here: -8, -3, 4. So we have 4 conditions:

a) x < -8. -(x+3) - (4-x) = -(8+x) --> x = -1. We reject the solution because our condition is not satisfied (-1 is not less than -8)

b) -8 <= x < -3. -(x+3) - (4-x) = (8+x) --> x = -15. We reject the solution because our condition is not satisfied (-15 is not within (-8,-3) interval.)

c) -3 <= x < 4 (x+3) - (4-x) = (8+x) --> x = 9. We reject the solution because our condition is not satisfied (-15 is not within (-3,4) interval.)

d) x >=4. (x+3) + (4-x) = (8+x) --> x = -1. We reject the solution because our condition is not satisfied (-1 is not more than 4)

thanks !


|x| = x when x >= 0 (x is either positive or 0)
|x| = -x when x < 0 (note here that you can put the equal to sign here as well x <= 0 because if x = 0,
|0| = 0 = -0 (all are the same)
So the '=' sign can be put with x > 0 or with x < 0. We usually put it with 'x > 0' for consistency.

When we are considering ranges, say,
x < -8 ------ x is less than -8
-8 <= x < -3 ------- x is greater than or equal to -8 but less than -3
-3 <= x < 4 ------- x is greater than or equal to -3 but less than 4
x >=4 -------- x is greater than or equal to 4

We need to include the transition points (-8, -3, 4) somewhere so we include them with greater than sign.

Mind you, we could have taken the ranges as
x <= -8
-8 < x <= -3
-3 < x <= 4
x > 4

The only point is that we don't include the transition points twice.

Hope the role of '=' sign is clear.



Hi Have a small doubt sounds silly but i need to understand this basic.
I could understand this part "There are 3 key points here: -8, -3, 4".
But why is that for all the cases like a) x < -8. -(x+3) - (4-x) = -(8+x) negative sign is added before the three brackets?

Thanks in advance,
RRSNATHAN.
Intern
Intern
avatar
Joined: 22 May 2013
Posts: 49
Concentration: General Management, Technology
GPA: 3.9
WE: Information Technology (Computer Software)
Followers: 0

Kudos [?]: 11 [0], given: 10

GMAT ToolKit User
Re: |x+3| - |4-x| = |8+x|. How many solutions does the equation [#permalink] New post 18 Jun 2013, 21:42
rrsnathan wrote:
VeritasPrepKarishma wrote:
guerrero25 wrote:
I am trying to understand the Modules questions - I took this from GMAT club's quant book .

Q. |x+3| - |4-x| = |8+x|. How many solutions does the equation have?

I could not follow why the equal signs are considered ? e.g -8 <= x < -3 , -3 <= x < 4, x >=4 ..Appreciate if someone can explain the logic?


Solution: There are 3 key points here: -8, -3, 4. So we have 4 conditions:

a) x < -8. -(x+3) - (4-x) = -(8+x) --> x = -1. We reject the solution because our condition is not satisfied (-1 is not less than -8)

b) -8 <= x < -3. -(x+3) - (4-x) = (8+x) --> x = -15. We reject the solution because our condition is not satisfied (-15 is not within (-8,-3) interval.)

c) -3 <= x < 4 (x+3) - (4-x) = (8+x) --> x = 9. We reject the solution because our condition is not satisfied (-15 is not within (-3,4) interval.)

d) x >=4. (x+3) + (4-x) = (8+x) --> x = -1. We reject the solution because our condition is not satisfied (-1 is not more than 4)

thanks !


|x| = x when x >= 0 (x is either positive or 0)
|x| = -x when x < 0 (note here that you can put the equal to sign here as well x <= 0 because if x = 0,
|0| = 0 = -0 (all are the same)
So the '=' sign can be put with x > 0 or with x < 0. We usually put it with 'x > 0' for consistency.

When we are considering ranges, say,
x < -8 ------ x is less than -8
-8 <= x < -3 ------- x is greater than or equal to -8 but less than -3
-3 <= x < 4 ------- x is greater than or equal to -3 but less than 4
x >=4 -------- x is greater than or equal to 4

We need to include the transition points (-8, -3, 4) somewhere so we include them with greater than sign.

Mind you, we could have taken the ranges as
x <= -8
-8 < x <= -3
-3 < x <= 4
x > 4

The only point is that we don't include the transition points twice.

Hope the role of '=' sign is clear.



Hi Have a small doubt sounds silly but i need to understand this basic.
I could understand this part "There are 3 key points here: -8, -3, 4".
But why is that for all the cases like a) x < -8. -(x+3) - (4-x) = -(8+x) negative sign is added before the three brackets?

Thanks in advance,
RRSNATHAN.


It just follows a very simple logic:
If we have been given say |x|
And now we need to get rid of the mod in order to evaluate its ranges.

So, If x<0? The in that case x will take any negative value, for eg take x= -7
|-7| = 7 which is equal to -x
and if x>0 then , suppose x = 7
|7| = 7 which is equal to x.

Hence, if the value inside Mod is resulting in negative value, then we need to put a - sign before it, to get its actual value like we saw the case with -7 over here.
similarly if the value inside mod is positive, in that case we do not need to negate it, and we can write it as it is.

Now in the main question you can go ahead checking, which term results in positive or negative, and put a - sign accordingly.

Hope this helped.
_________________

PS: Like my approach? Please Help me with some Kudos. :-)

1 KUDOS received
Intern
Intern
avatar
Joined: 26 Jun 2012
Posts: 24
Location: Germany
Concentration: Leadership, Finance
GMAT 1: 570 Q31 V39
GMAT 2: 710 Q43 V44
Followers: 0

Kudos [?]: 33 [1] , given: 1

GMAT ToolKit User
Re: |x+3| - |4-x| = |8+x|. How many solutions does the equation [#permalink] New post 20 Jun 2013, 23:30
1
This post received
KUDOS
Dear all,

I have understood the concept of critical points and applied it successfully when solving this question. My problem is time. It took me well over 3min to solve this question.
Can someone check my method and tell me where I am losing the time or on which part I might be able to speed up/take a shortcut?

What I did:
1. Find special points at first glance --> -8, -3, 4
2. Set up equation for x < -8 and solve --> x=9 which is not in defined range --> stop
3. Set up equation for -8 <= x < -3 and solve --> x=-7/3 which is not in defined range --> stop
4. Set up equation for -3 <= x < 4 and solve --> x=-1 which IS in defined range --> check in original equation --> -3 = 7 --> no solution
5. Set up equation for x => 4 and solve --> x=9 which IS in defined range --> check in original equation --> 7 = 17 --> no solution
6. Answer is zero solutions --> A

Thanks a lot!
Intern
Intern
avatar
Joined: 13 Jun 2013
Posts: 8
Followers: 0

Kudos [?]: 0 [0], given: 8

Re: |x+3| - |4-x| = |8+x|. How many solutions does the equation [#permalink] New post 22 Jun 2013, 19:07
I am stuck on this part in the Gmat Club book. I do understand how the conditions are set. But I can't figure out how the values for x were determined in those conditions. Ill use just a and b:

a) x < -8. -(x+3) - (4-x) = -(8+x) --> x = -1. We reject the solution because our condition is not satisfied (-1 is not less than -8)
b) -8 <= x < -3. -(x+3) - (4-x) = (8+x) --> x = -15. We reject the solution because our condition is not satisfied (-15 is not within (-8,-3) interval.)

Where do the x = ' ' values come from? I have been staring at this for half an hour.
I understood the whole concept in the '3-steps approach' but the '3-steps approach for complex problems' has me stuck suddenly. There goes mij GMAT-Mojo! Anyone able to help me get it back? Thanks.


BTW: Is this 650+ level?
2 KUDOS received
Intern
Intern
avatar
Joined: 22 May 2013
Posts: 49
Concentration: General Management, Technology
GPA: 3.9
WE: Information Technology (Computer Software)
Followers: 0

Kudos [?]: 11 [2] , given: 10

GMAT ToolKit User
Re: |x+3| - |4-x| = |8+x|. How many solutions does the equation [#permalink] New post 22 Jun 2013, 20:12
2
This post received
KUDOS
MadCowMartin wrote:
I am stuck on this part in the Gmat Club book. I do understand how the conditions are set. But I can't figure out how the values for x were determined in those conditions. Ill use just a and b:

a) x < -8. -(x+3) - (4-x) = -(8+x) --> x = -1. We reject the solution because our condition is not satisfied (-1 is not less than -8)
b) -8 <= x < -3. -(x+3) - (4-x) = (8+x) --> x = -15. We reject the solution because our condition is not satisfied (-15 is not within (-8,-3) interval.)

Where do the x = ' ' values come from? I have been staring at this for half an hour.
I understood the whole concept in the '3-steps approach' but the '3-steps approach for complex problems' has me stuck suddenly. There goes mij GMAT-Mojo! Anyone able to help me get it back? Thanks.


BTW: Is this 650+ level?


Well look at the question again, its :

|x+3| – |4-x| = |8+x|
Lets try to make all the terms positive first,

|x+3| = |x+8| + |x-4| ( since |x-a| = |a-x|)

Now you can see that for |x+3|, it will be have differently for

x>-3 and x<-3

since, refer to the property |x| = x for x>=0, and |x| = -x for x<0

hence, same way for |x+8|, will behave differently for x>-8 and x<-8

and for |x-4| will behave differently for x>4 and x<4

therefore, we get our conditions : (put it on the number line for clarity)

Hope this helps.
Attachments

Capture.PNG
Capture.PNG [ 4.12 KiB | Viewed 5608 times ]


_________________

PS: Like my approach? Please Help me with some Kudos. :-)

Expert Post
1 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4873
Location: Pune, India
Followers: 1149

Kudos [?]: 5341 [1] , given: 165

Re: |x+3| - |4-x| = |8+x|. How many solutions does the equation [#permalink] New post 22 Jun 2013, 22:08
1
This post received
KUDOS
Expert's post
MadCowMartin wrote:
I am stuck on this part in the Gmat Club book. I do understand how the conditions are set. But I can't figure out how the values for x were determined in those conditions. Ill use just a and b:

a) x < -8. -(x+3) - (4-x) = -(8+x) --> x = -1. We reject the solution because our condition is not satisfied (-1 is not less than -8)
b) -8 <= x < -3. -(x+3) - (4-x) = (8+x) --> x = -15. We reject the solution because our condition is not satisfied (-15 is not within (-8,-3) interval.)

Where do the x = ' ' values come from? I have been staring at this for half an hour.
I understood the whole concept in the '3-steps approach' but the '3-steps approach for complex problems' has me stuck suddenly. There goes mij GMAT-Mojo! Anyone able to help me get it back? Thanks.


BTW: Is this 650+ level?


You solve the equation to get the x = values

First of all, you are given |x+3|-|4-x|=|8+x|
Convert this to |x+3|-|x-4|=|x+8| (since it is a mod, |4-x| is the same as |x-4|)

Now key points are -8, -3 and 4.

Case a: x< -8
When x < -8, all three expressions (x + 3), (x - 4) and (x + 8) are negative.

So |x+3| = - (x + 3) (using the definition of mod)
|x-4| = - (x - 4)
|x+8| = - (x + 8)

-(x+3) - [-(x-4)] = -(x+8)
-7 = -x - 8
x = -1
Condition not satisfied so rejected.

And no, it is 750+ level.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Intern
Intern
avatar
Joined: 13 Jun 2013
Posts: 8
Followers: 0

Kudos [?]: 0 [0], given: 8

Re: |x+3| - |4-x| = |8+x|. How many solutions does the equation [#permalink] New post 23 Jun 2013, 02:28
Thank you both for making it all much more clearer!
I did try to solve the equation yesterday, but I messed up the distribution of the minus signs I guess. As it didn't seem to solve to the numbers given, I lost my way.

Following your steps I'm able to recreate the answer.

Good to know this is 750+ level. My target goal in 600 (Well personally 650, but 600 gets me into the program) and my test is in 10 days.
I first thought that the GMAT Club book was an overview of the basic fundamentals, but I should watch out for spending too much time on 750+ issues so I can spend more time on grasping the basics needed for 600.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23348
Followers: 3602

Kudos [?]: 28662 [0], given: 2808

Re: |x+3| - |4-x| = |8+x|. How many solutions does the equation [#permalink] New post 30 Jun 2013, 08:57
Expert's post
Responding to pm:
smartmanav wrote:
Hi Bunuel

Need your help for the concept of modulus.

Can we take minus one common out of a modulus number ?

For ex: I have an equation |x+3| - |4-x| = |8+x|

Can i write it as |x+3| + |x-4| = |8+x| ??

Thanks
Aakash


No. You cannot do that.

Modulus (|expression|) is not the same as parentheses ((expression)).

Also, |4-x|=|x-4|, so |x+3| - |4-x| = |8+x| is the same as |x+3| - |x-4| = |8+x|

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Expert Post
5 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23348
Followers: 3602

Kudos [?]: 28662 [5] , given: 2808

Re: |x+3| - |4-x| = |8+x|. How many solutions does the equation [#permalink] New post 30 Jun 2013, 10:07
5
This post received
KUDOS
Expert's post
3
This post was
BOOKMARKED
guerrero25 wrote:
|x+3| – |4-x| = |8+x| How many solutions will this equation have?

A. 0
B. 1
C. 2
D. 3
E. 4


[Reveal] Spoiler:
I am trying to understand the Modules questions - I took this from GMAT club's quant book .

Q. |x+3| - |4-x| = |8+x|. How many solutions does the equation have?

I could not follow why the equal signs are considered ? e.g -8 <= x < -3 , -3 <= x < 4, x >=4 ..Appreciate if someone can explain the logic?


Solution: There are 3 key points here: -8, -3, 4. So we have 4 conditions:

a) x < -8. -(x+3) - (4-x) = -(8+x) --> x = -1. We reject the solution because our condition is not satisfied (-1 is not less than -8)

b) -8 <= x < -3. -(x+3) - (4-x) = (8+x) --> x = -15. We reject the solution because our condition is not satisfied (-15 is not within (-8,-3) interval.)

c) -3 <= x < 4 (x+3) - (4-x) = (8+x) --> x = 9. We reject the solution because our condition is not satisfied (-15 is not within (-3,4) interval.)

d) x >=4. (x+3) + (4-x) = (8+x) --> x = -1. We reject the solution because our condition is not satisfied (-1 is not more than 4)

thanks !


Responding to pm.

Absolute value properties:

When x\leq{0} then |x|=-x, or more generally when some \ expression\leq{0} then |some \ expression|={-(some \ expression)}. For example: |-5|=5=-(-5);

When x\geq{0} then |x|=x, or more generally when some \ expression\geq{0} then |some \ expression|={some \ expression}. For example: |5|=5.

STEP BY STEP SOLUTION:

We have three transition points for |x+3| - |4-x| = |8+x|: -8, -3, and 4 (transition point is the value of x for which an expression in the modulus equals to zero). Thus we have four ranges to check:

1. x<-8;
2. -8\leq{x}\leq{-3};
3. -3<x<4
4. x\geq{4}

Note that it does not matter in which range(s) you include the transition points with "=" sign as long you include them.

1. When x<-8, then x+3 is negative, 4-x is positive and 8+x is negative. Thus |x+3|=-(x+3), |4-x|=4-x and |8+x|=-(8+x).

Therefore for this range |x+3| - |4-x| = |8+x|: transforms to -(x+3) - (4-x) =-(8+x): --> x=-1. This solution is NOT OK, since x=-1 is NOT in the range we consider (x<-8).

2. When -8\leq{x}\leq{-3}, then x+3 is negative, 4-x is positive and 8+x is positive. Thus |x+3|=-(x+3), |4-x|=4-x and |8+x|=8+x.

Therefore for this range |x+3| - |4-x| = |8+x|: transforms to -(x+3) - (4-x) =8+x: --> x=-15. This solution is NOT OK, since x=-15 is NOT in the range we consider (-8\leq{x}\leq{-3}).

3. When -3<x<4, then x+3 is positive, 4-x is positive and 8+x is positive. Thus |x+3|=x+3, |4-x|=4-x and |8+x|=8+x.

Therefore for this range |x+3| - |4-x| = |8+x|: transforms to x+3 - (4-x) =8+x: --> x=9. This solution is NOT OK, since x=9 is NOT in the range we consider (-3<x<4).

4. When x\geq{4}, then x+3 is positive, 4-x is negative and 8+x is positive. Thus |x+3|=x+3, |4-x|=-(4-x)=x-4 and |8+x|=8+x.

Therefore for this range |x+3| - |4-x| = |8+x|: transforms to x+3 - (x-4) =8+x: --> x=-1. This solution is NOT OK, since x=-1 is NOT in the range we consider (x\geq{4}).

Thus no value of x satisfies |x+3| - |4-x| = |8+x|.

Answer: A.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Re: |x+3| - |4-x| = |8+x|. How many solutions does the equation   [#permalink] 30 Jun 2013, 10:07
    Similar topics Author Replies Last post
Similar
Topics:
|x+3| - |4-x|=|8+x| How many solutions does the equation pc80 1 15 Apr 2010, 11:55
5 The system of equations above has how many solutions? yogachgolf 12 15 Nov 2007, 13:21
How many solutions in the real numbers the equation = - have andrehaui 3 18 Apr 2007, 05:00
1 How many solutions does equation (x^2-25)^2=x^2-10x+25 have joemama142000 14 22 Apr 2006, 17:07
7 Experts publish their posts in the topic How many possible integer values are there for x if |4x - 3| cpcalanoc 11 19 Dec 2004, 17:33
Display posts from previous: Sort by

|x+3| - |4-x| = |8+x|. How many solutions does the equation

  Question banks Downloads My Bookmarks Reviews Important topics  

Go to page    1   2    Next  [ 40 posts ] 



cron

GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.