Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

If x and y are positive integers such that x = 8y + 12, what is the greatest common divisor of x and y?

Given: \(x=8y+12\).

(1) x = 12u, where u is an integer --> \(x=12u\) --> \(12u=8y+12\) --> \(3(u-1)=2y\) --> the only thing we know from this is that 3 is a factor of \(y\). Is it GCD of \(x\) and \(y\)? Not clear: if \(x=36\), then \(y=3\) and \(GCD(x,y)=3\) but if \(x=60\), then \(y=6\) and \(GCD(x,y)=6\) --> two different answers. Not sufficient.

(2) y = 12z, where z is an integer --> \(y=12z\) --> \(x=8*12z+12\) --> \(x=12(8z+1)\). So, we have \(y=12z\) and \(x=12(8z+1)\). Now, as \(z\) and \(8z+1\) do not share any common factor but 1 (8z and 8z+1 are consecutive integers and consecutive integers do not share any common factor 1. As 8z has all factors of z then z and 8z+1 also do not share any common factor but 1). Thus, 12 must be GCD of \(x\) and \(y\). Sufficient.

Re: x and y are positive integers such that x=8y+12, what is the [#permalink]
12 Feb 2012, 22:35

bunuel where enigma123 is wrong in her explanation , i think her way is also correct, by putting values we can easily get to know relevant options, i think by substitiuing varoius values of Y like Y= 12, 24, 36 it becomes little bit lengthy , plz correct me if i am wrong.

If x and y are positive integers such that x=8y+12 [#permalink]
23 Mar 2012, 12:17

If x an y are positive integers such that x = 8y + 12, what is the greatest common divisor of x and y 1. x = 12u where u is an integer 2. y = 12z where z is an integer _________________

Re: If x and y are positive integers such that x=8y+12 [#permalink]
23 Mar 2012, 12:23

1

This post received KUDOS

Expert's post

dddmba2012 wrote:

If x an y are positive integers such that x = 8y + 12, what is the greatest common divisor of x and y 1. x = 12u where u is an integer 2. y = 12z where z is an integer

Merging similar topics. Please ask if anything remains unclear.

Re: x and y are positive integers such that x=8y+12, what is the [#permalink]
26 Aug 2013, 21:51

1

This post received KUDOS

[quote="enigma123"]x and y are positive integers such that x=8y+12, what is the greatest common divisor of x and y?

(1) X=12u, where u is an integer. (2) Y=12z, where z is an integer.

1) x = 12u --> 12u = 8y + 12 --> y = 3(u - 1)/2 Keeping in mind y is a positive integer, u = 3, 5, 7... ---> x = 36, 60, 84 and y = 3, 6, 9..and GCD of x and y is = 3, 6, 3 etc. Since GCD is not constant we cannot determine it.

2) y = 12z ---> x = 8 Ã— 12z + 12 = 12(8z + 1). Now z = 1, 2, 3, 4... ---> y = 12, 24, 36, 48... and x = 12 Ã— 9, 12 Ã— 17, 12 Ã— 25...you can see that GCD is 12 for every pair of x and y.

Re: x and y are positive integers such that x=8y+12, what is the [#permalink]
30 Aug 2014, 13:51

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________

Re: x and y are positive integers such that x=8y+12, what is the [#permalink]
20 Sep 2014, 08:44

Bunuel wrote:

If x and y are positive integers such that x = 8y + 12, what is the greatest common divisor of x and y?

Given: \(x=8y+12\).

(1) x = 12u, where u is an integer --> \(x=12u\) --> \(12u=8y+12\) --> \(3(u-1)=2y\) --> the only thing we know from this is that 3 is a factor of \(y\). Is it GCD of \(x\) and \(y\)? Not clear: if \(x=36\), then \(y=3\) and \(GCD(x,y)=3\) but if \(x=60\), then \(y=6\) and \(GCD(x,y)=6\) --> two different answers. Not sufficient.

(2) y = 12z, where z is an integer --> \(y=12z\) --> \(x=8*12z+12\) --> \(x=12(8z+1)\). So, we have \(y=12z\) and \(x=12(8z+1)\). Now, as \(z\) and \(8z+1\) do not share any common factor but 1 (8z and 8z+1 are consecutive integers and consecutive integers do not share any common factor 1. As 8z has all factors of z then z and 8z+1 also do not share any common factor but 1). Thus, 12 must be GCD of \(x\) and \(y\). Sufficient.

Answer: B.

Hope it's clear.

Bunuel Are (kq + 1 , q) always co-primes? where k and q are any positive integers?

Re: x and y are positive integers such that x=8y+12, what is the [#permalink]
20 Sep 2014, 12:35

Expert's post

1

This post was BOOKMARKED

tushain wrote:

Bunuel wrote:

If x and y are positive integers such that x = 8y + 12, what is the greatest common divisor of x and y?

Given: \(x=8y+12\).

(1) x = 12u, where u is an integer --> \(x=12u\) --> \(12u=8y+12\) --> \(3(u-1)=2y\) --> the only thing we know from this is that 3 is a factor of \(y\). Is it GCD of \(x\) and \(y\)? Not clear: if \(x=36\), then \(y=3\) and \(GCD(x,y)=3\) but if \(x=60\), then \(y=6\) and \(GCD(x,y)=6\) --> two different answers. Not sufficient.

(2) y = 12z, where z is an integer --> \(y=12z\) --> \(x=8*12z+12\) --> \(x=12(8z+1)\). So, we have \(y=12z\) and \(x=12(8z+1)\). Now, as \(z\) and \(8z+1\) do not share any common factor but 1 (8z and 8z+1 are consecutive integers and consecutive integers do not share any common factor 1. As 8z has all factors of z then z and 8z+1 also do not share any common factor but 1). Thus, 12 must be GCD of \(x\) and \(y\). Sufficient.

Answer: B.

Hope it's clear.

Bunuel Are (kq + 1 , q) always co-primes? where k and q are any positive integers?

Yes. kq and kq + 1 are consecutive integers, thus they do not share any common factor but 1, thus q and kq + 1 must also be co-prime. _________________

Re: x and y are positive integers such that x=8y+12, what is the [#permalink]
06 Dec 2014, 06:53

Hi Bunuel,

Please can you identify the gap in my understanding?

x= 8y + 12 x = 4(2y+3)

From 1: x = 12 u => x = 4 X 3 X U This means that (2y+3) must be a multiple of 3. The only way this can happen is if y is a multiple of 3. Lets say y = 3z

Re: x and y are positive integers such that x=8y+12, what is the [#permalink]
06 Dec 2014, 07:16

1

This post received KUDOS

Expert's post

dmgmat2014 wrote:

Hi Bunuel,

Please can you identify the gap in my understanding?

x= 8y + 12 x = 4(2y+3)

From 1: x = 12 u => x = 4 X 3 X U This means that (2y+3) must be a multiple of 3. The only way this can happen is if y is a multiple of 3. Lets say y = 3z

x = 4 X 3 X (2z+1)

y = 3 z

z and 2z+1 are co-prime.

So the HCF is 3.

What if z and 4 have some common factors? For example, consider z=2. _________________

Re: x and y are positive integers such that x=8y+12, what is the [#permalink]
06 Dec 2014, 10:28

Bunuel wrote:

dmgmat2014 wrote:

Hi Bunuel,

Please can you identify the gap in my understanding?

x= 8y + 12 x = 4(2y+3)

From 1: x = 12 u => x = 4 X 3 X U This means that (2y+3) must be a multiple of 3. The only way this can happen is if y is a multiple of 3. Lets say y = 3z

x = 4 X 3 X (2z+1)

y = 3 z

z and 2z+1 are co-prime.

So the HCF is 3.

What if z and 4 have some common factors? For example, consider z=2.

Thank you. I knew I was missing something

gmatclubot

Re: x and y are positive integers such that x=8y+12, what is the
[#permalink]
06 Dec 2014, 10:28

Essay B for Stanford GSB will essentially ask you to explain why you’re doing what you’re doing. Namely, the essay wants to know, A) why you’re seeking...

The following pictures perfectly describe what I’ve been up to these days. MBA is an extremely valuable tool in your career, no doubt, just that it is also...