Find all School-related info fast with the new School-Specific MBA Forum

It is currently 23 Oct 2014, 07:27

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

x/|x|<x. which of the following must be true about x ?

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
VP
VP
avatar
Joined: 30 Sep 2004
Posts: 1493
Location: Germany
Followers: 4

Kudos [?]: 52 [0], given: 0

x/|x|<x. which of the following must be true about x ? [#permalink] New post 06 Feb 2005, 08:16
7
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

31% (02:06) correct 69% (01:16) wrong based on 738 sessions
x/|x|<x. Which of the following must be true about x ?

A. x > 1
B. x > -1
C. |x| < 1
D. |x| = 1
E. |x|^2 > 1
[Reveal] Spoiler: OA

Last edited by Bunuel on 17 May 2014, 04:16, edited 2 times in total.
OA added.
VP
VP
avatar
Joined: 18 Nov 2004
Posts: 1447
Followers: 2

Kudos [?]: 16 [0], given: 0

 [#permalink] New post 06 Feb 2005, 16:35
"B".

x/|x|<x-------x<x|x|.....for +ve x...|x| > 1...for -ve x .....|x| < 1....that means x can be -1<x<0....or x > 1....in any case it has to be > -1
VP
VP
User avatar
Joined: 25 Nov 2004
Posts: 1497
Followers: 6

Kudos [?]: 31 [0], given: 0

 [#permalink] New post 06 Feb 2005, 16:49
banerjeea_98 wrote:
"B".

x/|x|<x-------x<x|x|.....for +ve x...|x| > 1...for -ve x .....|x| < 1....that means x can be -1<x<0....or x > 1....in any case it has to be > -1


lets suppose x be 0.5, which is greater than -1. 0.5/l0.5l=1 which is not less than 0.5.
VP
VP
avatar
Joined: 18 Nov 2004
Posts: 1447
Followers: 2

Kudos [?]: 16 [0], given: 0

 [#permalink] New post 06 Feb 2005, 16:53
MA wrote:
banerjeea_98 wrote:
"B".

x/|x|<x-------x<x|x|.....for +ve x...|x| > 1...for -ve x .....|x| < 1....that means x can be -1<x<0....or x > 1....in any case it has to be > -1


lets suppose x be 0.5 which is more than -1. 0.5/l0.5l=1 which is not less than 0.5.


ya but in no case x can be < -1.....it has to be > -1....but not bet 0 and 1.....x > 1 is wrong.....as the eqn also satisfies when x = -1/2
Manager
Manager
avatar
Joined: 01 Jan 2005
Posts: 168
Location: NJ
Followers: 1

Kudos [?]: 0 [0], given: 0

Re: PS - Inequality [#permalink] New post 06 Feb 2005, 16:57
christoph wrote:
x/|x|<x. which of the following must be true about x ?

a) x>1
b) x>-1
c) |x|<1
d) |x|=1
e) |x|^2>1

this is a question of the GMATCLUB collection 2. i got a different solution and i just dont know why.


The answer should be A.

x/|x| <x
=> dividing both sides by x
=> 1/|x|<1

thus either x>1 or x<-1 only then 1/|x| will be less than 1.
Thus A.
VP
VP
avatar
Joined: 18 Nov 2004
Posts: 1447
Followers: 2

Kudos [?]: 16 [0], given: 0

 [#permalink] New post 06 Feb 2005, 17:09
MA wrote:
banerjeea_98 wrote:
MA wrote:
banerjeea_98 wrote:
"B".

x/|x|<x-------x<x|x|.....for +ve x...|x| > 1...for -ve x .....|x| < 1....that means x can be -1<x<0....or x > 1....in any case it has to be > -1


lets suppose x be 0.5 which is more than -1. 0.5/l0.5l=1 which is not less than 0.5.


ya but in no case x can be < -1.....it has to be > -1....but not bet 0 and 1.....x > 1 is wrong.....as the eqn also satisfies when x = -1/2


baner,
unclear to me.... pls be specific.


Let's imagine a number line with points -1, 0 and 1.....as u can see x can't be <-1...e.g. x = -2......-1 < -2....will not satisfy....

Now let's see -1<x<0......x = -1/2.....-1 < -1/2.....satisfies
Now for 0<x<1.....x = 1/2.....1 < 1/2.....will not satisfy....
For x > 1....x = 2.....1 < 2....satisfies

As u see the soln lies in the following categories:
-1<x<0
x > 1

In all case x > -1 even tho it can't be 0<x<1.....altho I think the ques is lil weird.
1 KUDOS received
SVP
SVP
User avatar
Joined: 03 Jan 2005
Posts: 2251
Followers: 12

Kudos [?]: 204 [1] , given: 0

 [#permalink] New post 06 Feb 2005, 21:32
1
This post received
KUDOS
x/|x|<x
if x>0, then 1/x<1 ie, x>1
if x<0, then 1/(-x)>1, ie, x>-1

So combine these two, we know that x must be greater than -1.

baner is right, (B).
VP
VP
User avatar
Joined: 25 Nov 2004
Posts: 1497
Followers: 6

Kudos [?]: 31 [0], given: 0

 [#permalink] New post 06 Feb 2005, 21:45
HongHu wrote:
x/|x|<x
if x>0, then 1/x<1 ie, x>1
if x<0, then 1/(-x)>1, ie, x>-1

So combine these two, we know that x must be greater than -1.

baner is right, (B).


i think we need AkamaiBrah.

if so, then why 0<x>1 does not fit in the inequality x/|x|<x? i mean why all the values for x>-1 donot satisfy the inequality x/|x|<x? pls do explain........................

Last edited by MA on 06 Feb 2005, 21:50, edited 1 time in total.
SVP
SVP
User avatar
Joined: 03 Jan 2005
Posts: 2251
Followers: 12

Kudos [?]: 204 [0], given: 0

 [#permalink] New post 06 Feb 2005, 21:50
It doesn't say that all x greater than -1 would satisfy the equation. We get two range of x that satisfies the equation (-1,0) and (1,infinite). All that the answer says is that every x in our solution ranges are greater than -1, which is true.
GMAT Club Legend
GMAT Club Legend
User avatar
Joined: 07 Jul 2004
Posts: 5095
Location: Singapore
Followers: 19

Kudos [?]: 155 [0], given: 0

 [#permalink] New post 06 Feb 2005, 23:10
I believe we're debating solution B, which says x>-1 must be always true.

I can pick positive 1 as an integer that is greater than -1, but does not satisfy x/|x|<x.

If x = +1,
x/|x| = 1 which is not < 1. (1=1)

Now, if there's just one value of x > -1 that does not satisfy the inequality, then we can't say x>-1 is always true.
If you look at my previous post, I've not said I'm solving for x, i'm just stating values of x that hold true for the inequality. I came up with x<-1, and x>1.
SVP
SVP
User avatar
Joined: 03 Jan 2005
Posts: 2251
Followers: 12

Kudos [?]: 204 [0], given: 0

 [#permalink] New post 07 Feb 2005, 07:26
(A) cannot be correct, people.

Let me give you another example. Lets say we have two sets of integers.
S1=(0), S2=(2,3,4)
Now we know that x belongs to S1 or S2. Ask what must be true for x:
(A) x>1
(B) x>-1

(A) is obviously wrong
Because x could be an element of S1 or S2. If x belongs to S1, then it would be 0, and it is NOT greater than 1.
(B) is, however, correct
No matter which set x belongs, x is greater than -1.
You cannot say that well what about x=1? It satisfies x>-1, but is not in either S1 or S2. The mistake you are having here, is instead of A->B, you are trying to say B->A.
VP
VP
avatar
Joined: 18 Nov 2004
Posts: 1447
Followers: 2

Kudos [?]: 16 [0], given: 0

 [#permalink] New post 07 Feb 2005, 07:38
HongHu wrote:
(A) cannot be correct, people.

Let me give you another example. Lets say we have two sets of integers.
S1=(0), S2=(2,3,4)
Now we know that x belongs to S1 or S2. Ask what must be true for x:
(A) x>1
(B) x>-1

(A) is obviously wrong
Because x could be an element of S1 or S2. If x belongs to S1, then it would be 0, and it is NOT greater than 1.
(B) is, however, correct
No matter which set x belongs, x is greater than -1.
You cannot say that well what about x=1? It satisfies x>-1, but is not in either S1 or S2. The mistake you are having here, is instead of A->B, you are trying to say B->A.


Glad to see that I am not the only one in minority here, I am sticking with my ans "B" till we get the OA. :-D
SVP
SVP
User avatar
Joined: 03 Jan 2005
Posts: 2251
Followers: 12

Kudos [?]: 204 [0], given: 0

 [#permalink] New post 07 Feb 2005, 07:55
MA wrote:
HongHu wrote:
Can you give me one example where x is not greater than -1 in your solution set?


do refer my postings:

MA wrote:
banerjeea_98 wrote:
"B".

x/|x|<x-------x<x|x|.....for +ve x...|x| > 1...for -ve x .....|x| < 1....that means x can be -1<x<0....or x > 1....in any case it has to be > -1


lets suppose x be 0.5, which is greater than -1. 0.5/l0.5l=1 which is not less than 0.5.


if x=0.5, x is not greater than x/lxl.
0.5/l0.5l = 1, which is greater than 0.5.


You need to first find a point in your solution set, and then test if it is greater than -1. x=0.5 is not in your solution set.
SVP
SVP
User avatar
Joined: 03 Jan 2005
Posts: 2251
Followers: 12

Kudos [?]: 204 [0], given: 0

 [#permalink] New post 07 Feb 2005, 08:53
My example is completely parallel to the question, only in the integer and limited form.

Look:
HongHu wrote:
(A) cannot be correct, people.

Let me give you another example. Lets say we have two sets of integers.
S1=(0), S2=(2,3,4)
Now we know that x belongs to S1 or S2. Ask what must be true for x:
(A) x>1
(B) x>-1


Compare it with:
S1=(-1,0), S2=(1,infinity)
We know x belongs to S1 or S2. What must be true for x?

You get the same idea.
SVP
SVP
User avatar
Joined: 03 Jan 2005
Posts: 2251
Followers: 12

Kudos [?]: 204 [0], given: 0

 [#permalink] New post 07 Feb 2005, 14:48
greenandwise wrote:
A must be the answer because it works in every case and therefore MUST be true.


One value of x could be x=-1/2
x/|x|=-1<-1/2

However this x is not greater than 1. So it is not always true that x>1.
SVP
SVP
User avatar
Joined: 03 Jan 2005
Posts: 2251
Followers: 12

Kudos [?]: 204 [0], given: 0

Re: PS - Inequality [#permalink] New post 07 Feb 2005, 19:14
DLMD wrote:

if X <0, then X < X* (-X) ---------> X< -X^2 ------> 0 < -X^2-X ---------> 0 > X^2 + X ---------> X <0 or X <-1, so X <-1



The direction of an inequality sign would have to be changed when you multiply a negative number on both side.

For example,

-x<1
=>
x>-1
1 KUDOS received
SVP
SVP
User avatar
Joined: 03 Jan 2005
Posts: 2251
Followers: 12

Kudos [?]: 204 [1] , given: 0

 [#permalink] New post 07 Feb 2005, 23:11
1
This post received
KUDOS
Urgh, I just can't talk any sense into you guys. :( Read my examples!

A leads to B doesn't mean B leads to A!!! And if B doesn't lead to A it doesn't mean A doesn't lead to B! It's basic logic people!!!
SVP
SVP
User avatar
Joined: 03 Jan 2005
Posts: 2251
Followers: 12

Kudos [?]: 204 [0], given: 0

Re: PS - Inequality [#permalink] New post 08 Feb 2005, 09:31
DLMD wrote:

if X <0, then X < X* (-X) ---------> X< -X^2 ------> 0 < -X^2-X ---------> 0 > X^2 + X ---------> X <0 or X <-1, so X <-1



Question is x/|x|<x
if x<0, you multiply (-x) on both sides and change the direction of the inequality:
x > x*(-x)
Director
Director
avatar
Joined: 23 Apr 2010
Posts: 583
Followers: 2

Kudos [?]: 26 [0], given: 7

Re: PS - Inequality [#permalink] New post 01 Sep 2010, 03:16
Quote:
x/|x|<x. which of the following must be true about x ?

a) x>1
b) x>-1
c) |x|<1
d) |x|=1
e) |x|^2>1



Bunuel, I think there's a mistake in the question or in the answer choices:

Here's my solution:
1) x<0:
-x/x < x
-1<x<0

2) x>=0
x/x<x
x>1

The solution of the inequality is then:
-1<x<0 union x>1

The answer can't be B, since let x=1/2. We get:
(1/2)/(1/2) < (1/2)
1< 1/2
Contradiction.

I think the answer should be A since it satisfies all the scenarios.

Can you please clarify?
Expert Post
7 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23397
Followers: 3610

Kudos [?]: 28830 [7] , given: 2853

Re: PS - Inequality [#permalink] New post 01 Sep 2010, 06:32
7
This post received
KUDOS
Expert's post
x/|x|<x, which of the following must be true about x ?

A. x>1
B. x>-1
C. |x|<1
D. |x|=1
E. |x|^2>1

We are given that \frac{x}{|x|}<x (this is a true inequality), so first of all we should find the ranges of x for which this inequality holds true.

\frac{x}{|x|}< x multiply both sides of inequality by |x| (side note: we can safely do this as absolute value is non-negative and in this case we know it's not zero too) --> x<x|x| --> x(|x|-1)>0:
Either x>0 and |x|-1>0, so x>1 or x<-1 --> x>1;
Or x<0 and |x|-1<0, so -1<x<1 --> -1<x<0.

So we have that: -1<x<0 or x>1. Note x is ONLY from these ranges.

Option B says: x>-1 --> ANY x from above two ranges would be more than -1, so B is always true.

Answer: B.

nonameee wrote:
Quote:
x/|x|<x. which of the following must be true about x ?

a) x>1
b) x>-1
c) |x|<1
d) |x|=1
e) |x|^2>1



Bunuel, I think there's a mistake in the question or in the answer choices:

Here's my solution:
1) x<0:
-x/x < x
-1<x<0

2) x>=0
x/x<x
x>1

The solution of the inequality is then:
-1<x<0 union x>1

The answer can't be B, since let x=1/2. We get:
(1/2)/(1/2) < (1/2)
1< 1/2
Contradiction.

I think the answer should be A since it satisfies all the scenarios.

Can you please clarify?


The options are not supposed to be the solutions of inequality \frac{x}{|x|}<x.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Re: PS - Inequality   [#permalink] 01 Sep 2010, 06:32
    Similar topics Author Replies Last post
Similar
Topics:
2 Experts publish their posts in the topic If |x|=−x, which of the following must be true? Mountain14 2 22 Mar 2014, 01:31
17 Experts publish their posts in the topic If 4<(7-x)/3, which of the following must be true? mn2010 15 12 Aug 2010, 14:05
1 Experts publish their posts in the topic If x/|x|, which of the following must be true for all praveenvino 2 15 Jan 2011, 11:44
2 Experts publish their posts in the topic If x/|x| < x, which of the following must be true about tkarthi4u 24 06 Sep 2009, 21:14
X/|X| < X. Which of hte following must be true about X? zenzigler 7 09 Apr 2007, 03:03
Display posts from previous: Sort by

x/|x|<x. which of the following must be true about x ?

  Question banks Downloads My Bookmarks Reviews Important topics  

Go to page    1   2   3    Next  [ 42 posts ] 



GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.