Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

X, Y, and Z are three different Prime numbers, the product XYZ is divisible by how many different positive numbers?

4 6 8 9 12

Please describe method.

MUST KNOW FOR GMAT:

Finding the Number of Factors of an Integer

First make prime factorization of an integer \(n=a^p*b^q*c^r\), where \(a\), \(b\), and \(c\) are prime factors of \(n\) and \(p\), \(q\), and \(r\) are their powers.

The number of factors of \(n\) will be expressed by the formula \((p+1)(q+1)(r+1)\). NOTE: this will include 1 and n itself.

Example: Finding the number of all factors of 450: \(450=2^1*3^2*5^2\)

Total number of factors of 450 including 1 and 450 itself is \((1+1)*(2+1)*(2+1)=2*3*3=18\) factors.

BACK TO THE ORIGINAL QUESTION:

\(n=xyz\) (n=x^1y^1z^1) where \(x\), \(y\), and \(z\) are different prime factors will have \((1+1)(1+1)(1+1)=8\) different positive factors including 1 and xyz itself.

Thanks Bunuel very helpful, I thought I could do a quick calculation here to find out the number of factors but fell for the trap I guess:

2*3*5=30 so 30 is divisible by 1,30,15,6,5,3,2,10 but in my haste forgot to use 10,and 1 in here. One should just stick to the formula for a sure shot.

The approach specified by Bunuel is an efficient, a quick and a standard one. Use the same. Ignore the one specified by me as it is a bit time consuming when compared to that given by Bunuel.

Re: X, Y, and Z are three different Prime numbers, the product [#permalink]
21 Jan 2014, 22:03

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________

Re: X, Y, and Z are three different Prime numbers, the product [#permalink]
24 Apr 2015, 03:50

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________

Harvard asks you to write a post interview reflection (PIR) within 24 hours of your interview. Many have said that there is little you can do in this...