Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

You have a six-sided cube and six cans of paint, each a diff [#permalink]
09 Sep 2013, 05:45

5

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

95% (hard)

Question Stats:

41% (01:50) correct
59% (01:33) wrong based on 99 sessions

You have a six-sided cube and six cans of paint, each a different color. You may not mix colors of paint. How many distinct ways can you paint the cube using a different color for each side? (If you can reorient a cube to look like another cube, then the two cubes are not distinct.)

Re: You have a six-sided cube and six cans of paint, each a diff [#permalink]
10 Sep 2013, 05:16

3

This post received KUDOS

Expert's post

2

This post was BOOKMARKED

chetan86 wrote:

You have a six-sided cube and six cans of paint, each a different color. You may not mix colors of paint. How many distinct ways can you paint the cube using a different color for each side? (If you can reorient a cube to look like another cube, then the two cubes are not distinct.)

(A) 24 (B) 30 (C) 48 (D) 60 (E) 120

Paint one of the faces red and make it the top face. 5 options for the bottom face. Now, four side faces can be painted in (4-1)! = 3! = 6 ways (circular arrangements of 4 colors).

Re: You have a six-sided cube and six cans of paint, each a diff [#permalink]
10 Sep 2013, 06:56

Bunuel wrote:

chetan86 wrote:

You have a six-sided cube and six cans of paint, each a different color. You may not mix colors of paint. How many distinct ways can you paint the cube using a different color for each side? (If you can reorient a cube to look like another cube, then the two cubes are not distinct.)

(A) 24 (B) 30 (C) 48 (D) 60 (E) 120

Paint one of the faces red and make it the top face. 5 options for the bottom face. Now, four side faces can be painted in (4-1)! = 3! = 6 ways (circular arrangements of 4 colors).

Re: You have a six-sided cube and six cans of paint, each a diff [#permalink]
27 Dec 2013, 19:12

Bunuel wrote:

chetan86 wrote:

You have a six-sided cube and six cans of paint, each a different color. You may not mix colors of paint. How many distinct ways can you paint the cube using a different color for each side? (If you can reorient a cube to look like another cube, then the two cubes are not distinct.)

(A) 24 (B) 30 (C) 48 (D) 60 (E) 120

Paint one of the faces red and make it the top face. 5 options for the bottom face. Now, four side faces can be painted in (4-1)! = 3! = 6 ways (circular arrangements of 4 colors).

Total = 5*6 = 30.

Answer: B.

Similar question to practice:

Can you give more detail on how you determined what method to use to solve this problem? I have never heard of the "circular arrangement" technique you used.

Re: You have a six-sided cube and six cans of paint, each a diff [#permalink]
28 Dec 2013, 02:56

2

This post received KUDOS

Expert's post

1

This post was BOOKMARKED

sjmarinov wrote:

Bunuel wrote:

chetan86 wrote:

You have a six-sided cube and six cans of paint, each a different color. You may not mix colors of paint. How many distinct ways can you paint the cube using a different color for each side? (If you can reorient a cube to look like another cube, then the two cubes are not distinct.)

(A) 24 (B) 30 (C) 48 (D) 60 (E) 120

Paint one of the faces red and make it the top face. 5 options for the bottom face. Now, four side faces can be painted in (4-1)! = 3! = 6 ways (circular arrangements of 4 colors).

Total = 5*6 = 30.

Answer: B.

Similar question to practice:

Can you give more detail on how you determined what method to use to solve this problem? I have never heard of the "circular arrangement" technique you used.

The number of arrangements of n distinct objects in a row is given by n!. The number of arrangements of n distinct objects in a circle is given by (n-1)!.

From Gmat Club Math Book (combinatorics chapter): "The difference between placement in a row and that in a circle is following: if we shift all object by one position, we will get different arrangement in a row but the same relative arrangement in a circle. So, for the number of circular arrangements of n objects we have:

Re: You have a six-sided cube and six cans of paint, each a diff [#permalink]
27 May 2014, 05:19

Bunuel wrote:

chetan86 wrote:

You have a six-sided cube and six cans of paint, each a different color. You may not mix colors of paint. How many distinct ways can you paint the cube using a different color for each side? (If you can reorient a cube to look like another cube, then the two cubes are not distinct.)

(A) 24 (B) 30 (C) 48 (D) 60 (E) 120

Paint one of the faces red and make it the top face. 5 options for the bottom face. Now, four side faces can be painted in (4-1)! = 3! = 6 ways (circular arrangements of 4 colors).

Re: You have a six-sided cube and six cans of paint, each a diff [#permalink]
28 May 2014, 02:41

1

This post received KUDOS

jlgdr wrote:

Bunuel wrote:

chetan86 wrote:

You have a six-sided cube and six cans of paint, each a different color. You may not mix colors of paint. How many distinct ways can you paint the cube using a different color for each side? (If you can reorient a cube to look like another cube, then the two cubes are not distinct.)

(A) 24 (B) 30 (C) 48 (D) 60 (E) 120

Paint one of the faces red and make it the top face. 5 options for the bottom face. Now, four side faces can be painted in (4-1)! = 3! = 6 ways (circular arrangements of 4 colors).

I really didn't get how you used circular arrangements here.

We have six different colors and 6 different sides.

How many ways can we paint the cube with each side a different color?

Shouldn't it be 6! ?

Please clarify Great problem btw

Cheers J

Painting a cube with six different colors is more complicated than arranging six distinct things in a row.

If you have six distinct colors, say ROYGBP, you could place them in the slots below in 6! ways. Why? Any of the 6 colors could go in the first slot, any of the five remaining could go in the second, and so on. So the total is 6*5*4*3*2*1=6! _ _ _ _ _ _

Now the cube is a combination of slots and a circular arrangement. Here is my sophisticated diagram for that:

_ _ _ _ _ _

The four slots between the top and bottom 'faces' actually wrap around the whole cube. So, let's say for the four 'slots' you choose ROYG.

ROYG =GROY = YGRO = OYGR = ROYG

All of these arrangements are the same because essentially each one is just a rotation of the cube by 90 degrees, not a different paint job.

So we treat the four 'slots' in the middle the same way we would a circular table. Hence the above solutions: you can choose any color for the top face, you can choose one of the five remaining colors for the bottom face (5 ways), and since the four middle faces are 'in a circle' they can be arranged (4-1)!=3! ways. So the total is 5*3!

The tricky part is that we don't count the ways in which we can choose the color of the first face, since every color is going to be chosen anyway. Essentially, you are finding the ways you can paint the other sides relative to one of painted sides. Otherwise you are including in your total the number of different ways you can look at the cube (which don't constitute a new paint job).

You have a six-sided cube and six cans of paint, each a diff [#permalink]
15 Oct 2014, 21:32

Bunuel wrote:

chetan86 wrote:

You have a six-sided cube and six cans of paint, each a different color. You may not mix colors of paint. How many distinct ways can you paint the cube using a different color for each side? (If you can reorient a cube to look like another cube, then the two cubes are not distinct.)

(A) 24 (B) 30 (C) 48 (D) 60 (E) 120

Paint one of the faces red and make it the top face. 5 options for the bottom face. Now, four side faces can be painted in (4-1)! = 3! = 6 ways (circular arrangements of 4 colors).

Total = 5*6 = 30.

Answer: B.

@Bunuel, why haven't the ways to paint the first (top)face have been counted, i.e 6C1 ways to choose from amongst the 6 diffferent paints?? And what does the wording provided in the question in the parentheses entails? _________________

The Mind is everything . What you think you become. - Lord Buddha

Consider giving KUDOS if you appreciate my post !!

gmatclubot

You have a six-sided cube and six cans of paint, each a diff
[#permalink]
15 Oct 2014, 21:32

Hey everyone, today’s post focuses on the interview process. As I get ready for interviews at Kellogg and Tuck (and TheEngineerMBA ramps up for his HBS... ...