Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

100 people are attending a newspaper conference. 45 of them [#permalink]

Show Tags

16 Feb 2012, 21:34

8

This post received KUDOS

19

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

95% (hard)

Question Stats:

46% (01:29) correct
54% (01:30) wrong based on 1443 sessions

HideShow timer Statistics

100 people are attending a newspaper conference. 45 of them are writers and more than 38 are editors. Of the people at the conference, x are both writers and editors and 2x are neither. What is the largest possible number of people who are both writers and editors?

100 people are attending a newspaper conference. 45 of them are writers and more than 38 are editors. Of the people at the conference, x are both writers and editors and 2x are neither. What is the largest possible number of people who are both writers and editors? 6 16 17 33 84

Re: 100 people are attending a newspaper conference. 45 of them [#permalink]

Show Tags

05 Mar 2012, 13:25

5

This post received KUDOS

1

This post was BOOKMARKED

question stem total=100 W=45 E= more than 38 W-and-E=x Neither=2x x? answer- 100=45+39+2x-x (to maximize x we need to minimize E. that is why E=39 the least value) x=16
_________________

Happy are those who dream dreams and are ready to pay the price to make them come true

I am still on all gmat forums. msg me if you want to ask me smth

Helpful Geometry formula sheet: http://gmatclub.com/forum/best-geometry-93676.html I hope these will help to understand the basic concepts & strategies. Please Click ON KUDOS Button.

Re: 100 people are attending a newspaper conference. 45 of them [#permalink]

Show Tags

11 Apr 2014, 02:32

calreg11 wrote:

100 people are attending a newspaper conference. 45 of them are writers and more than 38 are editors. Of the people at the conference, x are both writers and editors and 2x are neither. What is the largest possible number of people who are both writers and editors?

A. 6 B. 16 C. 17 D. 33 E. 84

W + E - Both + Neither = 100

45 + E - (x) + 2x = 100

45 + E + x = 100

Now let us plug in answer options:

We cannot plug in 84 as E will become negative If we plug in x = 33 then E = 22 (Wrong as there are more than 38 editors) If we plug in x = 17 then E = 38 (Wrong as there are more than 38 editors) Hence answer is x= 16
_________________

76000 Subscribers, 7 million minutes of learning delivered and 5.6 million video views

Re: 100 people are attending a newspaper conference. 45 of them [#permalink]

Show Tags

03 Aug 2014, 17:32

Bunuel wrote:

calreg11 wrote:

100 people are attending a newspaper conference. 45 of them are writers and more than 38 are editors. Of the people at the conference, x are both writers and editors and 2x are neither. What is the largest possible number of people who are both writers and editors? 6 16 17 33 84

100=45+{Editors}-x+2x --> x=55-{Editors}. We want to maximize x, thus we should minimize {Editors}, minimum possible value of {Editors} is 39, thus x={Both}=55-39=16.

Answer: B.

Hope it's clear.

Hi Bunuel,

Can you please explain "100=45+{Editors}-x+2x --> x=55-{Editors}. We want to maximize x, thus we should minimize {Editors}, minimum possible value of {Editors} is 39, thus x={Both}=55-39=16."

I understand the concept that when we want to maximize something, we want to minimize the other, but why do we want to minimize editors? Aren't we trying to find the greatest number of editors AND writers? Shouldn't we want to MAXIMIZE Editors AND Writers?

Re: 100 people are attending a newspaper conference. 45 of them [#permalink]

Show Tags

03 Aug 2014, 20:14

This would be my approach,

there are 45 writers.. let that be; now lets say there are 38 editors, 'x' of whom are also writers, who are already accounted for as writers in that 45. So the number of editors who are not writers is (38-x).

Now the number of people who are neither writers or editors is 100 - [( No.of writers) + (No.of Editors who are not writers)], and we know this is 2x

100 - [ 45 + ( 38 -x ) ] = 2x x= 17 but since number of editors is MORE than 38, 'x' has to be less than 17, so if we assume no.of editors is just 1 more at 39, then x=16.

100 people are attending a newspaper conference. 45 of them are writers and more than 38 are editors. Of the people at the conference, x are both writers and editors and 2x are neither. What is the largest possible number of people who are both writers and editors? 6 16 17 33 84

100=45+{Editors}-x+2x --> x=55-{Editors}. We want to maximize x, thus we should minimize {Editors}, minimum possible value of {Editors} is 39, thus x={Both}=55-39=16.

Answer: B.

Hope it's clear.

Hi Bunuel,

Can you please explain "100=45+{Editors}-x+2x --> x=55-{Editors}. We want to maximize x, thus we should minimize {Editors}, minimum possible value of {Editors} is 39, thus x={Both}=55-39=16."

I understand the concept that when we want to maximize something, we want to minimize the other, but why do we want to minimize editors? Aren't we trying to find the greatest number of editors AND writers? Shouldn't we want to MAXIMIZE Editors AND Writers?

Thanks

We want to maximize x, which is {both writers and editors}. To maximize x, we need to minimize {Editors} because x = 55 - {Editors}.

Re: 100 people are attending a newspaper conference. 45 of them [#permalink]

Show Tags

10 Feb 2016, 02:46

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: 100 people are attending a newspaper conference. 45 of them [#permalink]

Show Tags

30 Jan 2017, 09:18

wow totally missed the more than clause in the question stem. Great question cause this is exactly what I need to focus on. Small mistakes such as this are killing me
_________________

Re: 100 people are attending a newspaper conference. 45 of them [#permalink]

Show Tags

22 May 2017, 20:16

calreg11 wrote:

100 people are attending a newspaper conference. 45 of them are writers and more than 38 are editors. Of the people at the conference, x are both writers and editors and 2x are neither. What is the largest possible number of people who are both writers and editors?

A. 6 B. 16 C. 17 D. 33 E. 84

The trick of this problem is that you will read it too quickly. It states that more than 38 are editors, so you have to introduce an inequality into your table. Once you have > 38 as the total number of editors and x as the number of both writers and editors, then the number of editor non-writers is 55-2x. 55-2x + x > 38 or x<17. The max integer value less than 17 is 16.