Last visit was: 16 Jul 2025, 01:06 It is currently 16 Jul 2025, 01:06
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
BatrickPatemann
Joined: 29 May 2024
Last visit: 15 Jul 2025
Posts: 69
Own Kudos:
53
 [1]
Given Kudos: 139
Products:
Posts: 69
Kudos: 53
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
SafSin28
Joined: 16 Aug 2022
Last visit: 13 Jul 2025
Posts: 79
Own Kudos:
54
 [1]
Given Kudos: 51
Products:
Posts: 79
Kudos: 54
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
AVMachine
Joined: 03 May 2024
Last visit: 15 Jul 2025
Posts: 201
Own Kudos:
152
 [1]
Given Kudos: 40
Posts: 201
Kudos: 152
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
crimson_king
Joined: 21 Dec 2023
Last visit: 15 Jul 2025
Posts: 126
Own Kudos:
126
 [1]
Given Kudos: 85
GRE 1: Q170 V170
GRE 1: Q170 V170
Posts: 126
Kudos: 126
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
For solving this particular question, we split the numbers into two parts-

23.57111317^11 & (10^5)^11

Considering just 23.57111317 there are 8 digits to the right of the decimal point & on raising this number to the power of 11, there will be 8*11=88 digits to the right of the decimal point.

On multiplying this number with (10^5)^11=10^55 the decimal shifts 55 places to the right. In this situation the number of digits to the right of the decimal point of n would ideally be-

88-55=33 digits

Hence the answer to this question is option (D) 33
User avatar
__Poisonivy__
Joined: 24 Feb 2024
Last visit: 08 Apr 2025
Posts: 64
Own Kudos:
56
 [1]
Given Kudos: 2
Posts: 64
Kudos: 56
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
The no. of digits after decimal depend upon the no. of times a no. is div. by 10.

so,
n= (23.57111317*10^5)^11
=> (2357111317 * 10^-8 * 10^5)^11
=>2357111317 * 10^-88 * 10^55
=> 2357111317 * 10^-33.

So, after decimal there will be 33 digits.

Ans- 33
User avatar
Shruuuu
Joined: 21 Nov 2023
Last visit: 12 Jul 2025
Posts: 81
Own Kudos:
95
 [1]
Given Kudos: 99
Location: India
Schools: ISB '27 (A)
GMAT Focus 1: 655 Q83 V86 DI78
Schools: ISB '27 (A)
GMAT Focus 1: 655 Q83 V86 DI78
Posts: 81
Kudos: 95
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
n = (2357111.317)^11
Since 371 are the last 3 digits / right of decimal point, the number of digits at the right would be -
Number of digits to the right * power
3 * 11 = 33

IMO D
Bunuel
12 Days of Christmas 2024 - 2025 Competition with $40,000 of Prizes

If \(n = (23.57111317 * 10^5)^{11}\), how many digits are to the right of the decimal point of n?

A. 3
B. 8
C. 30
D. 33
E. 55

 


This question was provided by GMAT Club
for the 12 Days of Christmas Competition

Win $40,000 in prizes: Courses, Tests & more

 

User avatar
MinhChau789
Joined: 18 Aug 2023
Last visit: 13 Jul 2025
Posts: 144
Own Kudos:
139
 [1]
Given Kudos: 2
Posts: 144
Kudos: 139
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
n = (2357111.317)^11.

Total digits = 3 x 11 = 33.

Answer: D
User avatar
Seb2m02
Joined: 03 Oct 2023
Last visit: 14 Jul 2025
Posts: 38
Own Kudos:
35
 [1]
Given Kudos: 31
Posts: 38
Kudos: 35
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I would say answer D

(23.57111317∗10^5) = 2357111.317
(23.57111317∗10^5)^11 = 2357111.317^11
We have 3 digits to the right of the of the decimal point power 11
11x3 = 33 -> answer D
User avatar
Invincible_147
Joined: 29 Sep 2023
Last visit: 14 Jul 2025
Posts: 81
Own Kudos:
59
 [1]
Given Kudos: 151
Products:
Posts: 81
Kudos: 59
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi All,

Simplifying the equation

we get n= \((2357111.317)[color=#000000]^11;\),[/color]

so to find out the no of digits after the no is muplitplied to the power, we can take examples of smaller numbers and how they are behaving,

eg \((0.5)[color=#000000]^2;\) will give 0.25, there fore get observe that if \(10^1;\) is denomenator, leads to \(10^2;\). [/color]

eg 2 , \((2.1)[color=#000000]^3;\) will give 9.261 [/color]

from both the examples we can deduce that the no of digits after decimals= no of digit before the power x the power its raised to

therefore from n we get = 3 x 11

That is 33 , therefore the answer
User avatar
Eswar69
Joined: 12 Jun 2024
Last visit: 28 May 2025
Posts: 43
Own Kudos:
41
 [1]
Given Kudos: 14
Posts: 43
Kudos: 41
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
12 Days of Christmas 2024 - 2025 Competition with $40,000 of Prizes

If \(n = (23.57111317 * 10^5)^{11}\), how many digits are to the right of the decimal point of n?

A. 3
B. 8
C. 30
D. 33
E. 55

 


This question was provided by GMAT Club
for the 12 Days of Christmas Competition

Win $40,000 in prizes: Courses, Tests & more

 

23.57111317 - This number contains 8 digits after the decimal point.
10^5 = 2357111.317 - This number contains 3 digits after the decimal point.

2 methods of solving it.

Method 1
(2357111.317)^11 which means 3 digits after the decimal points
3 * 11 = 33

Method 2
(23.57111317)^11 = 8 * 11 = 88 digits after the decimal points
(10^5)^11 = 10^55 = 55 digits
88-55 = 33

[D] is the correct answer.
User avatar
Oppenheimer1945
Joined: 16 Jul 2019
Last visit: 15 Jul 2025
Posts: 795
Own Kudos:
557
 [1]
Given Kudos: 223
Location: India
GMAT Focus 1: 645 Q90 V76 DI80
GPA: 7.81
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
(3 decimals )^11
This there are 33 digits after decimal
(10^-3)^11

And d
User avatar
bellsprout24
Joined: 05 Dec 2024
Last visit: 02 Mar 2025
Posts: 69
Own Kudos:
83
 [1]
Given Kudos: 2
Posts: 69
Kudos: 83
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Answer is D. 33

The digits to the right of the decimal point = n * existing digits after decimal

23.57111317 * 10^5 = 2357111.317. We take 11 * 3 existing digits = 33 for the answer
User avatar
satish_sahoo
Joined: 02 Jul 2023
Last visit: 15 Jul 2025
Posts: 165
Own Kudos:
153
 [1]
Given Kudos: 162
Products:
Posts: 165
Kudos: 153
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
First need to solve inside the bracket

so, it will become (2357111.317)^11

The general rule is multiplication of number of digits after decimal point with the exponent

Hence, \(n=3*11= 33\)

IMO D
User avatar
twinkle2311
Joined: 05 Nov 2021
Last visit: 15 Jul 2025
Posts: 160
Own Kudos:
161
 [1]
Given Kudos: 10
Location: India
Concentration: Finance, Real Estate
GPA: 9.041
Posts: 160
Kudos: 161
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
We need to find how many digits are to the right of the decimal point in n = (23.57111317 × 10^5)^11.

--> The number 23.57111317 has 8 decimal places. Multiplying it by 10^5 shifts the decimal 5 places to the right, leaving 3 decimal places.

--> Raising it to the power of 11 multiplies the decimal places by 11. So, 3 × 11 = 33.

Final Answer: 33 digits. Option D.
User avatar
Karanjotsingh
Joined: 18 Feb 2024
Last visit: 15 Jul 2025
Posts: 143
Own Kudos:
90
 [1]
Given Kudos: 344
Location: India
Concentration: Finance, Entrepreneurship
Products:
Posts: 143
Kudos: 90
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
  1. Start with the Number:
    • 23.57111317 has 8 digits after the decimal point.
  2. Raise to the 11th Power:
    • When you raise a number with 8 decimal places to the 11th power, the total decimal digits become 8×11=88.
  3. Multiply by 10^55:
    • Multiplying by 10^55 moves the decimal point 55 places to the right.
    • This reduces the number of decimal digits: 88−55=33.
Conclusion:
There are 33 digits to the right of the decimal point in n.

Answer:
D. 33
User avatar
D3N0
Joined: 21 Jan 2015
Last visit: 16 July 2025
Posts: 594
Own Kudos:
509
 [1]
Given Kudos: 128
Location: India
Concentration: Operations, Technology
GMAT 1: 620 Q48 V28
GMAT 2: 690 Q49 V35
WE:Operations (Retail: E-commerce)
Products:
GMAT 2: 690 Q49 V35
Posts: 594
Kudos: 509
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
n = (23.57111317* 10^5 )^11
remove the decimal and convert the value in the bracket to int (without decimal and power of 10s)
so n = integer * [10 power -3] power 11
expanding given us n = int * 10 power -33
so 33 digits
User avatar
LastHero
Joined: 15 Dec 2024
Last visit: 12 Jul 2025
Posts: 146
Own Kudos:
147
 [1]
Posts: 146
Kudos: 147
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
n=(23.57111317*10^5)^11=(2357111317*10^(-3))^11=2357111317^11 * 10^(-33)

In 2357111317^11 there are no trailing zeros (its last digit is 3) and, since it is divided by 10^(-33), the number of digits to the right of the decimal point of n is 33.

Answer D
User avatar
Berdiyor
Joined: 02 Feb 2019
Last visit: 22 May 2025
Posts: 41
Own Kudos:
85
 [1]
Given Kudos: 14
Location: Uzbekistan
GMAT 1: 640 Q50 V25
GMAT 2: 670 Q51 V28
GPA: 3.4
GMAT 2: 670 Q51 V28
Posts: 41
Kudos: 85
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
The correct answer is D.

Because 5 squared of 10 removes 5 digits of 23.57111317. That will be 2357111.317
Now we can calculate that 3*11=33.
User avatar
GMATNextStep
Joined: 01 Aug 2023
Last visit: 15 Jul 2025
Posts: 38
Own Kudos:
36
 [1]
Given Kudos: 1
GMAT Focus 1: 715 Q85 V88 DI84 (Online)
GMAT Focus 1: 715 Q85 V88 DI84 (Online)
Posts: 38
Kudos: 36
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Quote:
If n=(23.57111317∗10^5)^11, how many digits are to the right of the decimal point of n?

Simplify = (2357111.317)^11
Ignore 2357111, focus on (0.317)^11 = 3 digits * 11 = 33 digits -> there should be 33 digits to the right of decimal point

Choose D
User avatar
Nikhil17bhatt
Joined: 25 Aug 2018
Last visit: 31 May 2025
Posts: 79
Own Kudos:
74
 [1]
Given Kudos: 14
Posts: 79
Kudos: 74
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
IMO D

n=(23.57111317∗10^5)^11

Now new number is

n=(2357111.317)^11

Now taking the point after decimal

0.317 ^ 11

for ex if the number would have been

.5 ^2 then point afgter decimal would be 2

if it would be

0.3^4 then point after decimal would be 4

Using analogy

0.317 ^ 11

points after decimals is 11*3 = 33
   1   2   3   4   
Moderators:
Math Expert
102591 posts
PS Forum Moderator
695 posts