GMAT Question of the Day: Daily via email | Daily via Instagram New to GMAT Club? Watch this Video

 It is currently 29 May 2020, 06:30

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# (5^55/10^30)(2^30/5^25)=

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

### Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 64240

### Show Tags

07 Mar 2016, 02:36
1
00:00

Difficulty:

5% (low)

Question Stats:

95% (00:46) correct 5% (01:03) wrong based on 88 sessions

### HideShow timer Statistics

$$(\frac{5^{55}}{10^{30}})(\frac{2^{30}}{5^{25}})=$$

A. 1
B. 5^30/2^60
C. 5^30/2^30
D. 5^55*2^30/10^30
E. 10^85/50^55

_________________
Math Expert
Joined: 02 Aug 2009
Posts: 8602

### Show Tags

07 Mar 2016, 03:39
Bunuel wrote:
$$(\frac{5^{55}}{10^{30}})(\frac{2^{30}}{5^{25}})=$$

A. 1
B. 5^30/2^60
C. 5^30/2^30
D. 5^55*2^30/10^30
E. 10^85/50^55

Hi
In these Qs we should get the base to prime factors

$$(\frac{5^{55}}{10^{30}})(\frac{2^{30}}{5^{25}})$$..
$$(\frac{5^{55}}{{2^{30}*5^{30}}})(\frac{2^{30}}{5^{25}})=$$..
$$(\frac{5^{55-30}}{2^{30}})(\frac{2^{30}}{5^{25}})=$$..
$$(5^{25})(\frac{1}{5^{25}})=$$.. 1
ans A
_________________
Manager
Status: Persevere
Joined: 08 Jan 2016
Posts: 114
Location: Hong Kong
GMAT 1: 750 Q50 V41
GPA: 3.52

### Show Tags

07 Mar 2016, 03:40
Bunuel wrote:
$$(\frac{5^{55}}{10^{30}})(\frac{2^{30}}{5^{25}})=$$

A. 1
B. 5^30/2^60
C. 5^30/2^30
D. 5^55*2^30/10^30
E. 10^85/50^55

$$(\frac{5^{55}}{10^{30}})(\frac{2^{30}}{5^{25}})$$
$$=(\frac{5^{55}}{(2*5)^{30}})(\frac{2^{30}}{5^{25}})$$
$$=5^{55}*5^{-30}*5^{-25}*2^{30}*2^{-30}$$
$$=5^{55-30-25}*2^{30-30}$$
$$=5^0*2^0$$
$$= 1$$

The correct answer, therefore, is A
Director
Status: I don't stop when I'm Tired,I stop when I'm done
Joined: 11 May 2014
Posts: 516
GPA: 2.81
WE: Business Development (Real Estate)

### Show Tags

10 Jun 2016, 11:34
($$\frac{5^{55 }}{10^{ 30}}$$) ($$\frac{2^{30 }}{5^{25 }}$$) =

A. 1

B. $$\frac{5^{30}}{2^{60}}$$

C. $$\frac{5^{30}}{2^{30}}$$

D. $$\frac{(5^ {55}) (2^ {30})}{10^{30}}$$

E. $$\frac{10^{85}}{50^{55}}$$
Math Expert
Joined: 02 Sep 2009
Posts: 64240

### Show Tags

10 Jun 2016, 13:34
AbdurRakib wrote:
($$\frac{5^{55 }}{10^{ 30}}$$) ($$\frac{2^{30 }}{5^{25 }}$$) =

A. 1

B. $$\frac{5^{30}}{2^{60}}$$

C. $$\frac{5^{30}}{2^{30}}$$

D. $$\frac{(5^ {55}) (2^ {30})}{10^{30}}$$

E. $$\frac{10^{85}}{50^{55}}$$

Merging topics. Please refer to the discussion above.
_________________
Manager
Joined: 18 Jan 2010
Posts: 236

### Show Tags

13 Jun 2016, 23:14
Bunuel wrote:
$$(\frac{5^{55}}{10^{30}})(\frac{2^{30}}{5^{25}})=$$

A. 1
B. 5^30/2^60
C. 5^30/2^30
D. 5^55*2^30/10^30
E. 10^85/50^55

This question uses following formulae of indices:

$$a^m$$*$$a^n$$ = $$a^{m+n}$$

$$\frac{1}{{a^m}}$$ = $$a^{-m}$$

$$a^m$$ / $$a^n$$ = $$a^{m-n}$$

$$(\frac{5^{55}}{10^{30}})(\frac{2^{30}}{5^{25}})=$$

$$10^{30}$$ can be written as $$5^{30}$$ * $$2^{30}$$

Powers of 5 can now be brought together: +55-30-25 = 0

$$5^0$$ = 1

Similarly let us arrange power of 2:

-30+30 = 0

$$2^0$$ = 1

Answer: 1*1 = 1. A is the answer.
SVP
Joined: 06 Nov 2014
Posts: 1861

### Show Tags

14 Jun 2016, 00:46
AbdurRakib wrote:
($$\frac{5^{55 }}{10^{ 30}}$$) ($$\frac{2^{30 }}{5^{25 }}$$) =

A. 1

B. $$\frac{5^{30}}{2^{60}}$$

C. $$\frac{5^{30}}{2^{30}}$$

D. $$\frac{(5^ {55}) (2^ {30})}{10^{30}}$$

E. $$\frac{10^{85}}{50^{55}}$$

($$\frac{5^{55 }}{10^{ 30}}$$) ($$\frac{2^{30 }}{5^{25 }}$$) = (5^25/ 2^30) * (2^30/5^25) = 1

Correct Option: A
Re: (5^55/10^30)(2^30/5^25)=   [#permalink] 14 Jun 2016, 00:46

# (5^55/10^30)(2^30/5^25)=

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne