Author 
Message 
TAGS:

Hide Tags

Director
Joined: 23 Apr 2010
Posts: 581

a, b, and c are integers and a < b < c. S is the set of all [#permalink]
Show Tags
06 Feb 2012, 03:37
4
This post received KUDOS
14
This post was BOOKMARKED
Question Stats:
51% (03:07) correct
49% (02:05) wrong based on 254 sessions
HideShow timer Statistics
a, b, and c are integers and a < b < c. S is the set of all integers from a to b, inclusive. Q is the set of all integers from b to c, inclusive. The median of set S is (3/4) b. The median of set Q is (7/8) c. If R is the set of all integers from a to c, inclusive, what fraction of c is the median of set R? A. 3/8 B. 1/2 C. 11/16 D. 5/7 E. 3/4 OA: Bunuel or someone else, where am I going wrong with this one? Median of a combined interval will be in the middle between the median of Q and the median of S: (\(3/4\) b + \(7/8\) c) * \(1/2\) (1) From the formula for median of Q we get: (b+c)/2 = \(7/8\) c ==> b = \(3/4\) c (2) Substituting b from (2) into (1) we get: (\(3/4\) *\(3/4\)c + \(7/8\) c) * 1/2 ==> \(23/32\) c Please help. Thank you.
Official Answer and Stats are available only to registered users. Register/ Login.



Math Expert
Joined: 02 Sep 2009
Posts: 39626

Re: Median of a combined interval [#permalink]
Show Tags
06 Feb 2012, 03:49
14
This post received KUDOS
Expert's post
11
This post was BOOKMARKED
nonameee wrote: a, b, and c are integers and a < b < c. S is the set of all integers from a to b, inclusive. Q is the set of all integers from b to c, inclusive. The median of set S is (3/4) b. The median of set Q is (7/8) c. If R is the set of all integers from a to c, inclusive, what fraction of c is the median of set R? A. 3/8 B. 1/2 C. 11/16 D. 5/7 E. 3/4 OA: Bunuel or someone else, where am I going wrong with this one? Median of a combined interval will be in the middle between the median of Q and the median of S: (\(3/4\) b + \(7/8\) c) * \(1/2\) (1) From the formula for median of Q we get: (b+c)/2 = \(7/8\) c ==> b = \(3/4\) c (2) Substituting b from (2) into (1) we get: (\(3/4\) *\(3/4\)c + \(7/8\) c) * 1/2 ==> \(23/32\) c Please help. Thank you. Given that S is the set of all integers from a to b, inclusive, Q is the set of all integers from b to c, inclusive and R is the set of all integers from a to c, inclusive, so sets S, Q and R have to be consecutive integers sets. For any set of consecutive integers (generally for any evenly spaced set) median (also the mean) equals to the average of the first and the last terms. So we have: Median of \(S=\frac{a+b}{2}=b*\frac{3}{4}\) > \(b=2a\); Median of \(Q=\frac{b+c}{2}=c*\frac{7}{8}\) > \(b=c*\frac{3}{4}\) > \(2a=c*\frac{3}{4}\) > \(a=c*\frac{3}{8}\); Median of \(R=\frac{a+c}{2}=\frac{c*\frac{3}{8}+c}{2}=c*\frac{11}{16}\) Answer: C (\(\frac{11}{16}\)).
_________________
New to the Math Forum? Please read this: All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Director
Joined: 23 Apr 2010
Posts: 581

Re: Median of a combined interval [#permalink]
Show Tags
06 Feb 2012, 03:52
Bunuel, I know the solution that you've given (I've read it in some of your previous posts).
But could you please explain where is the mistake in my solution?
Thank you.



Manager
Joined: 31 Jan 2012
Posts: 74

Re: Median of a combined interval [#permalink]
Show Tags
06 Feb 2012, 04:01
Another quick question, so for this question we're assuming that the medium is equal to mean. I thought the only way for that to happen is if there is no skewness in the set, but it doesn't say that anywhere. Is there any sort of general rule to tell if medium = mean?
Thanks so much Bunuel



Director
Joined: 23 Apr 2010
Posts: 581

Re: Median of a combined interval [#permalink]
Show Tags
06 Feb 2012, 04:23
Can someone please explain the mistake in my original solution in the first post? Thanks a lot.



Math Expert
Joined: 02 Sep 2009
Posts: 39626

Re: Median of a combined interval [#permalink]
Show Tags
06 Feb 2012, 04:34



Math Expert
Joined: 02 Sep 2009
Posts: 39626

Re: Median of a combined interval [#permalink]
Show Tags
06 Feb 2012, 04:39



Director
Joined: 23 Apr 2010
Posts: 581

Re: Median of a combined interval [#permalink]
Show Tags
06 Feb 2012, 05:11
Bunuel, so in order to determine a median of two intervals of integers (a,b) and (b,c) (where a<b<c), you should always use the formula: (a+c)/2?



Math Expert
Joined: 02 Sep 2009
Posts: 39626

Re: Median of a combined interval [#permalink]
Show Tags
06 Feb 2012, 05:20
nonameee wrote: Bunuel, so in order to determine a median of two intervals of integers (a,b) and (b,c) (where a<b<c), you should always use the formula: (a+c)/2? The median (mean) of the integers from a to c, inclusive is always (a+c)/2 (if you have some additional info you can obtain this value in another way but this way is ALWAYS true). Consider two sets: {1, 2, 3} and {3, 4, 5, 6, 7, 8, 9} > combined set {1, 2, 3, 4, 5, 6, 7 8, 9} As you've written the median (mean) of combined set should be (2+6)/2=4, which is wrong as median of combined set is 5. Hope it's clear.
_________________
New to the Math Forum? Please read this: All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Director
Joined: 23 Apr 2010
Posts: 581

Re: Median of a combined interval [#permalink]
Show Tags
06 Feb 2012, 05:22
Yes, thanks a lot. I got it.



Manager
Joined: 12 Oct 2012
Posts: 128
WE: General Management (Other)

Re: Median of a combined interval [#permalink]
Show Tags
03 Dec 2012, 11:14
1
This post received KUDOS
Bunuel wrote: kys123 wrote: Another quick question, so for this question we're assuming that the medium is equal to mean. I thought the only way for that to happen is if there is no skewness in the set, but it doesn't say that anywhere. Is there any sort of general rule to tell if medium = mean?
Thanks so much Bunuel For any evenly spaced set (aka AP) the arithmetic mean (average) is equal to the median (consecutive integers are evenly spaced set). Bunuel, how do we know that they are evenly spaced. The a<b< c can be 1<2<3 or random 4<78<125 (not evenly spaced). Am i missing something?



Math Expert
Joined: 02 Sep 2009
Posts: 39626

Re: Median of a combined interval [#permalink]
Show Tags
04 Dec 2012, 04:15
aditi2013 wrote: Bunuel wrote: kys123 wrote: Another quick question, so for this question we're assuming that the medium is equal to mean. I thought the only way for that to happen is if there is no skewness in the set, but it doesn't say that anywhere. Is there any sort of general rule to tell if medium = mean?
Thanks so much Bunuel For any evenly spaced set (aka AP) the arithmetic mean (average) is equal to the median (consecutive integers are evenly spaced set). Bunuel, how do we know that they are evenly spaced. The a<b< c can be 1<2<3 or random 4<78<125 (not evenly spaced). Am i missing something? Given that "S is the set of all integers from a to b, inclusive" and "Q is the set of all integers from b to c, inclusive", which means that both S and Q are sets of consecutive integers, thus evenly spaced sets. Hope it's clear.
_________________
New to the Math Forum? Please read this: All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Intern
Joined: 13 Apr 2013
Posts: 16
Location: India
Concentration: Operations, Strategy
GPA: 3.5
WE: Operations (Transportation)

Re: a, b, and c are integers and a < b < c. S is the set of all [#permalink]
Show Tags
10 Jul 2013, 02:58
Bunnel, if i take set S as 3,6,8 and set Q as 8,14,16 whats wrong with it? satisfy questions requirement and are not in AP. We cant apply consecutive integers formula then.



Math Expert
Joined: 02 Sep 2009
Posts: 39626

Re: a, b, and c are integers and a < b < c. S is the set of all [#permalink]
Show Tags
10 Jul 2013, 03:09
abhinawster wrote: Bunnel, if i take set S as 3,6,8 and set Q as 8,14,16 whats wrong with it? satisfy questions requirement and are not in AP. We cant apply consecutive integers formula then. S is the set of all integers from a to b, inclusive. Say a=3 and b=8. What is set S then? S={3, 4, 5, 6, 7, 8} not {3, 6, 8}, where did 4, 5 and 7 go? Aren't they integers in the range from 3 to 8? The same applies to set Q. Hope it's clear.
_________________
New to the Math Forum? Please read this: All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Intern
Joined: 13 Apr 2013
Posts: 16
Location: India
Concentration: Operations, Strategy
GPA: 3.5
WE: Operations (Transportation)

Re: a, b, and c are integers and a < b < c. S is the set of all [#permalink]
Show Tags
10 Jul 2013, 05:12
Thanx bunnel, i completely missd that.........



GMAT Club Legend
Joined: 09 Sep 2013
Posts: 15939

Re: a, b, and c are integers and a < b < c. S is the set of all [#permalink]
Show Tags
08 Oct 2014, 23:02
Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up  doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Books  GMAT Club Tests  Best Prices on GMAT Courses  GMAT Mobile App  Math Resources  Verbal Resources



GMAT Club Legend
Joined: 09 Sep 2013
Posts: 15939

Re: a, b, and c are integers and a < b < c. S is the set of all [#permalink]
Show Tags
12 Nov 2015, 07:47
Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up  doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Books  GMAT Club Tests  Best Prices on GMAT Courses  GMAT Mobile App  Math Resources  Verbal Resources



Director
Joined: 10 Mar 2013
Posts: 597
Location: Germany
Concentration: Finance, Entrepreneurship
GPA: 3.88
WE: Information Technology (Consulting)

a, b, and c are integers and a < b < c. S is the set of all [#permalink]
Show Tags
06 Dec 2015, 06:52
nonameee wrote: a, b, and c are integers and a < b < c. S is the set of all integers from a to b, inclusive. Q is the set of all integers from b to c, inclusive. The median of set S is (3/4) b. The median of set Q is (7/8) c. If R is the set of all integers from a to c, inclusive, what fraction of c is the median of set R? A. 3/8 B. 1/2 C. 11/16 D. 5/7 E. 3/4 OA: Bunuel or someone else, where am I going wrong with this one? Median of a combined interval will be in the middle between the median of Q and the median of S: (\(3/4\) b + \(7/8\) c) * \(1/2\) (1) From the formula for median of Q we get: (b+c)/2 = \(7/8\) c ==> b = \(3/4\) c (2) Substituting b from (2) into (1) we get: (\(3/4\) *\(3/4\)c + \(7/8\) c) * 1/2 ==> \(23/32\) c Please help. Thank you. Bunuels solution looks easier.. but may be my approach will help some of you 1.\(\frac{(b+c)}{2} = \frac{7}{8}c\) after some calculations we get\(\frac{c}{b}=\frac{4}{3}\) and using this ratio let's say c=8, b=6 2. Let's make the same for a&b: \(\frac{(a+b)}{2} = \frac{3}{4}b\) after some calculations we get b=2a, and from (1) we know that b=6 than a=3 Our numbers in set R look like this 3,4,5,6,7,8. The Median of the set is equal to \(\frac{(8+3)}{2}\) = \(\frac{11}{2}\) What fraction of c is the median of set R > \(\frac{11}{2}=x*8\) (which is C) x\(=11/16\) Answer C
_________________
When you’re up, your friends know who you are. When you’re down, you know who your friends are.
Share some Kudos, if my posts help you. Thank you !
800Score ONLY QUANT CAT1 51, CAT2 50, CAT3 50 GMAT PREP 670 MGMAT CAT 630 KAPLAN CAT 660



Intern
Joined: 09 Feb 2016
Posts: 1

Re: a, b, and c are integers and a < b < c. S is the set of all [#permalink]
Show Tags
09 Feb 2016, 23:39
Hi.. So for this question only way to solve is by knowing the fact that median will lie between the 2 and eliminating the options... right?



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 7440
Location: Pune, India

Re: a, b, and c are integers and a < b < c. S is the set of all [#permalink]
Show Tags
10 Feb 2016, 01:30
smathur1291 wrote: Hi.. So for this question only way to solve is by knowing the fact that median will lie between the 2 and eliminating the options... right? Another method is "assuming values". a < b < c Median of Q is 7/8 of c so c must be a multiple of 8. Say c = 8. Median of c = 7. Set Q = {6, 7, 8} Then b = 6 Median of S = (3/4) of b which is (3/4)*6 = 4.5. Set S = {3, 4, 5, 6} So the entire set R = {3, 4, 5, 6, 7, 8} Median = 5.5 Median as a fraction of c: 5.5/8 = 11/16 Answer (C)
_________________
Karishma Veritas Prep  GMAT Instructor My Blog
Get started with Veritas Prep GMAT On Demand for $199
Veritas Prep Reviews




Re: a, b, and c are integers and a < b < c. S is the set of all
[#permalink]
10 Feb 2016, 01:30



Go to page
1 2
Next
[ 23 posts ]





Similar topics 
Author 
Replies 
Last post 
Similar Topics:


2


A, B, and C are consecutive odd integers such that A < B < C.

Mo2men 
2 
01 Jun 2017, 15:15 



If a, b, and c are consecutive integers and a < b < c, which of the

Bunuel 
6 
23 May 2017, 07:00 

2


If a, b, and c are consecutive integers such that a < b < c and a is

Bunuel 
3 
18 Apr 2017, 04:08 

30


a, b, and c are integers and a < b < c. S is the set of all

KocharRohit 
16 
28 Dec 2016, 23:59 

20


a, b, and c are integers and a<b<c. S is the set of all integers from

goldgoldandgold 
10 
29 Mar 2016, 00:05 



