GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 15 Dec 2019, 19:26

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# A bag has 100 marbles numbered consecutively 0 - 99 inclusive. Another

Author Message
TAGS:

### Hide Tags

Director
Joined: 07 Jun 2004
Posts: 552
Location: PA
A bag has 100 marbles numbered consecutively 0 - 99 inclusive. Another  [#permalink]

### Show Tags

27 Sep 2010, 15:25
5
00:00

Difficulty:

65% (hard)

Question Stats:

48% (01:34) correct 52% (01:30) wrong based on 97 sessions

### HideShow timer Statistics

A bag has 100 marbles numbered consecutively 0 - 99 inclusive. Another bag has 60 marbles numbered consecutively 90 - 149 inclusive. If a marble is randomly chosen from each bag, what is the probability that two marbles have the same number

1/10

1/60

1/100

1/600

1/6000
SVP
Status: Nothing comes easy: neither do I want.
Joined: 12 Oct 2009
Posts: 2477
Location: Malaysia
Concentration: Technology, Entrepreneurship
Schools: ISB '15 (M)
GMAT 1: 670 Q49 V31
GMAT 2: 710 Q50 V35
Re: A bag has 100 marbles numbered consecutively 0 - 99 inclusive. Another  [#permalink]

### Show Tags

27 Sep 2010, 15:44
rxs0005 wrote:
A bag has 100 marbles numbered consecutively 0 - 99 inclusive. Another bag has 60 marbles numbered consecutively 90 - 149 inclusive. If a marble is randomly chosen from each bag, what is the probability that two marbles have the same number

1/10

1/60

1/100

1/600

1/6000

Common numbers : 90,91...99 total 10 numbers

probability = $$\frac{10}{{100*60}}$$ = $$\frac{1}{{600}}$$ = D
_________________
Fight for your dreams :For all those who fear from Verbal- lets give it a fight

Money Saved is the Money Earned

Jo Bole So Nihaal , Sat Shri Akaal

GMAT Club Premium Membership - big benefits and savings

Gmat test review :
http://gmatclub.com/forum/670-to-710-a-long-journey-without-destination-still-happy-141642.html
Retired Moderator
Joined: 02 Sep 2010
Posts: 717
Location: London
Re: A bag has 100 marbles numbered consecutively 0 - 99 inclusive. Another  [#permalink]

### Show Tags

27 Sep 2010, 15:47
No of ways to pick two marbles = 100*60 = 6000

No of ways to pick same number = (90,90) , ... , (99,99) = 10

So probability = 1/600
_________________
Senior Manager
Status: Time to step up the tempo
Joined: 24 Jun 2010
Posts: 327
Location: Milky way
Schools: ISB, Tepper - CMU, Chicago Booth, LSB
Re: A bag has 100 marbles numbered consecutively 0 - 99 inclusive. Another  [#permalink]

### Show Tags

27 Sep 2010, 20:50
1
rxs0005 wrote:
A bag has 100 marbles numbered consecutively 0 - 99 inclusive. Another bag has 60 marbles numbered consecutively 90 - 149 inclusive. If a marble is randomly chosen from each bag, what is the probability that two marbles have the same number

1/10

1/60

1/100

1/600

1/6000

My approach:

Pickup the matching 10 numbered marbles from the first bag -- Probability - 10/100 -- 1/10

Now we have one of the marble numbered from 90 - 99. From the other bag we need to pick just the one marble which will have a number from 90 - 99 to ensure we have a matching marble set. Its probability is 1/60.

Hence combined probability is (1/10) * (1/60) -- 1/600. Answer D.

There is a similar question in this forum , check this out -- http://gmatclub.com/forum/junior-58914.html
Manager
Joined: 16 Sep 2010
Posts: 118
Location: India
Schools: Terry, Georgia Tech
WE 1: Working for Wipro Technologies since April 2010
Re: A bag has 100 marbles numbered consecutively 0 - 99 inclusive. Another  [#permalink]

### Show Tags

27 Sep 2010, 22:03
ezhilkumarank wrote:
rxs0005 wrote:
A bag has 100 marbles numbered consecutively 0 - 99 inclusive. Another bag has 60 marbles numbered consecutively 90 - 149 inclusive. If a marble is randomly chosen from each bag, what is the probability that two marbles have the same number

1/10

1/60

1/100

1/600

1/6000

My approach:

Pickup the matching 10 numbered marbles from the first bag -- Probability - 10/100 -- 1/10

Now we have one of the marble numbered from 90 - 99. From the other bag we need to pick just the one marble which will have a number from 90 - 99 to ensure we have a matching marble set. Its probability is 1/60.

Hence combined probability is (1/10) * (1/60) -- 1/600. Answer D.

There is a similar question in this forum , check this out -- http://gmatclub.com/forum/junior-58914.html

my approach.....

probability of picking a marble from 0 -99 in the first set = 1/100 { since 0-99 is hundred marbles}

similarly, probability of picking a marble from 90-149 in the second set = 1/60

therefore, probability that they are same = (1/100) * (1/60) = 1/6000

it can happen for 10 marbles ( 90 to 99 inclusive ) .

Thus, total probability = 10 *1/6000 = 1/600 ANS
Senior Manager
Status: Gathering chakra
Joined: 05 Feb 2018
Posts: 445
A bag has 100 marbles numbered consecutively 0 - 99 inclusive. Another  [#permalink]

### Show Tags

24 Jan 2019, 15:52
Take the first bag of 100 marbles. 10 of the numbers overlap, so there is a 10/100 chance that there is a possibility of an overlap. (There’s a 90% chance already that the numbers will not be the same; for instance, that’s the case if the first marble drawn is numbered 72.) Once the first marble is drawn, the only way the two marbles will have the same number is if the second marble has exactly the same number. In other words, if we drew 96 from the first bag, we’re looking for the probability of drawing 96 from the second bag, as well. The probability of drawing a specific number from the second bag is 1/60. In order to draw the same marble from both bags, we need both of those events to happen, so we multiply the probabilities:
1/10 × 1/60 = 1/600, choice (D).
A bag has 100 marbles numbered consecutively 0 - 99 inclusive. Another   [#permalink] 24 Jan 2019, 15:52
Display posts from previous: Sort by