GMATPrepNow wrote:

A baker makes chocolate cookies and peanut cookies. His recipes allow him to make chocolate cookie in batches of 7 and peanut cookies in batches of 6. If he makes exactly 95 cookies, what is the minimum number of chocolate chip cookies he makes?

A. 7

B. 14

C. 21

D. 28

E. 35

\(x \geqslant 1\,\,\,{\text{choco}}\,\,{\text{batches}}{\text{,}}\,\,\,\,\,{\text{7}}\,\,{\text{choco/batch}}\)

\(y \geqslant 1\,\,\,{\text{pean}}\,\,{\text{batches}}{\text{,}}\,\,\,\,\,{\text{6}}\,\,{\text{pean/batch}}\)

\(7x + 6y = 95\,\,\,\,\,\left( * \right)\)

\({\text{? = }}{\left( {{\text{7x}}} \right)_{\,\min }}\)

\({\left( {{\text{7x}}} \right)_{\,\min }}\,\,\, \Leftrightarrow \,\,\,{x_{\min }}\,\,\,\)

\({\left( {multiple\,\,of\,\,6} \right)_{\max }} = {\left( {6y} \right)_{\max }}\mathop = \limits^{\left( * \right)} \,\,95 - 7x\)

\(\begin{gathered}

x = 1\,\,\, \Rightarrow \,\,\,95 - 7x = 88\,\,{\text{not}}\,\,{\text{divisible}}\,\,{\text{by}}\,\,3\, \hfill \\

x = 2\,\,\, \Rightarrow \,\,\,95 - 7x = {\text{odd}}\,\,\left( {{\text{not}}\,\,{\text{divisible}}\,\,{\text{by}}\,\,2} \right) \hfill \\

x = 3\,\,\, \Rightarrow \,\,\,95 - 7x = 74\,\,{\text{not}}\,\,{\text{divisible}}\,\,{\text{by}}\,\,3 \hfill \\

x = 4\,\,\, \Rightarrow \,\,\,95 - 7x = {\text{odd}}\,\,\left( {{\text{not}}\,\,{\text{divisible}}\,\,{\text{by}}\,\,2} \right) \hfill \\

x = 5\,\,\, \Rightarrow \,\,\,95 - \boxed{7x = 35} = {\text{60}}\,\,\underline {{\text{divisible}}\,\,{\text{by}}\,\,6!} \hfill \\

\end{gathered}\)

The above follows the notations and rationale taught in the GMATH method.

Regards,

fskilnik.

_________________

Fabio Skilnik :: GMATH method creator (Math for the GMAT)

Our high-level "quant" preparation starts here: https://gmath.net